Notes1

February-09-16 1:28 PM

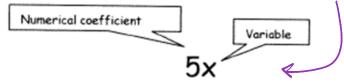
Chapter 5: Polynomials

Polynomials: Key Terms

Term	Definition	Example
Monomial		
Binomial		
Trinomial		
Polynomial		
Degree of a term		
Degree of a Polynomial		
Algebra Tiles		
Combine like-terms	*****	
Area Model		
Distribution or Expanding		
FOIL		
GCF		
Factoring using a GCF		
Factoring by Grouping		
Factoring $ax^2 + bx + c$ when a = 1		
Factoring $ax^2 + bx + c$ when $a \neq 1$		
Difference of Squares		
Perfect Square Trinomial		

Lesson 1: Review of Polynomials

A *polynomial* is an expression formed by adding or subtracting one or more monomials.



Some examples include:

	ly ² + 0	$5x^3 - 6$	$3a^2b^3 - 5ab + 7$
Coefficient(s)	l	5	3,-5
Constant(s)	0	-6	7
Variable(s)	y ²	χ^3	a^2b^3 , ab

Some non-examples include: x^{-2} $\sqrt{7x} = (7x)^{2} \frac{1}{x} + y = x^{-1} + y$ exponents. To add or subtract polynomials <u>Combine like terms</u>. (same variable part).

Ex. 1 Simplify each polynomial.

a)
$$(2x-5z+y)-(7x+4y-2z)$$

= $2x-5z+y-7x+4y+2z$
b) $(2x^3-4xy^2+5x^2y^2)+(3x^3+2x^2y-6x^2y^2)$
= $2x^3-4xy^2(5x^2y^2+3x^3+2x^2y-6x^2y^2)$
= $5x^3-4xy^2+2x^2y-x^2y^2$

Ex. 2 Imagine your younger brother or sister thinks that 2x + 3y = 5xy. Write how you would explain to him that his reasoning is incorrect.

Chapter 5: Polynomials

50

6

Classifying polynomials:

By Nu	mber of Terms:			
•	Monomial: one term.	Eg.	$7x, 5, -3xy^3$	
•	Binomial: two terms	Eg.	x + 2, $5x - 3y$,	$y^3 + \frac{5x}{2}$
•	Trinomial: three terms	Eg.	$x^2 + 3x + 1$,	$5xy - 3x + y^2$
•	Polynomial: four terms	Eg.	7x + y - z + 5,	$x^4 - 3x^3 + x^2 - 7x$

By Degree:

To find the degree of a term, add the exponents within that term.

Eg. $-3x_y^1{}^3$ is a 4th degree term because the sum of the exponents is 4. $5z^4y^2x^3$ is a 9th degree term because the sum of the exponents is 9.

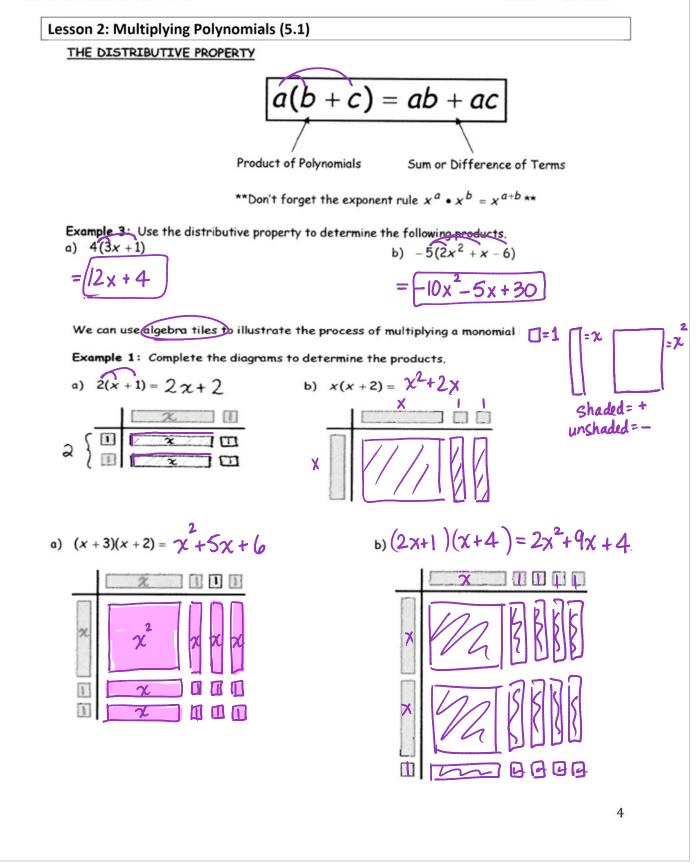
To find the degree of a polynomial first calculate the degree of each term. The highest degree amongst the terms is the degree of the polynomial.

Eg. $x^4 - 3x^3 + x^2 - 7x$ is a 4th degree polynomial. The highest degree term is x^4 . $3xyz^4 - 2x^2y^3$ is a 6th degree binomial. The highest degree term is $3xyz^4$ (6th degree)

Classify each of the following be degree and by number of terms. $\frac{7}{7}$

2 5	
Degree: Degree: Degree:	
Name: <u>Binomial</u> Name: <u>Trinomial</u> Name: <u>Polynom</u>	ial
13. 7 14. Write a polynomial 15. Write a polynomial Degree: 0 with one term that is with three degree 3. ≥ Monomial is degree	terms that
Name: Monomial x^3 or $3a^2b$ b^5-b^4+2	" Irinomia I
or	
	3

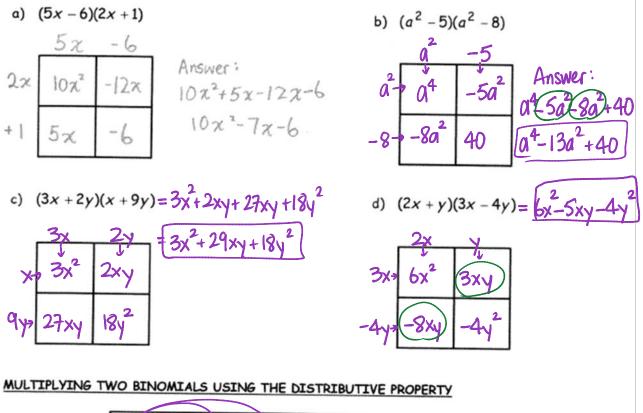
Chapter 5: Polynomials



Chapter 5: Polynomials

We can also use a box model to show multiplication!

Ex. 2: Use a box model to determine the product of each of the following binomials:



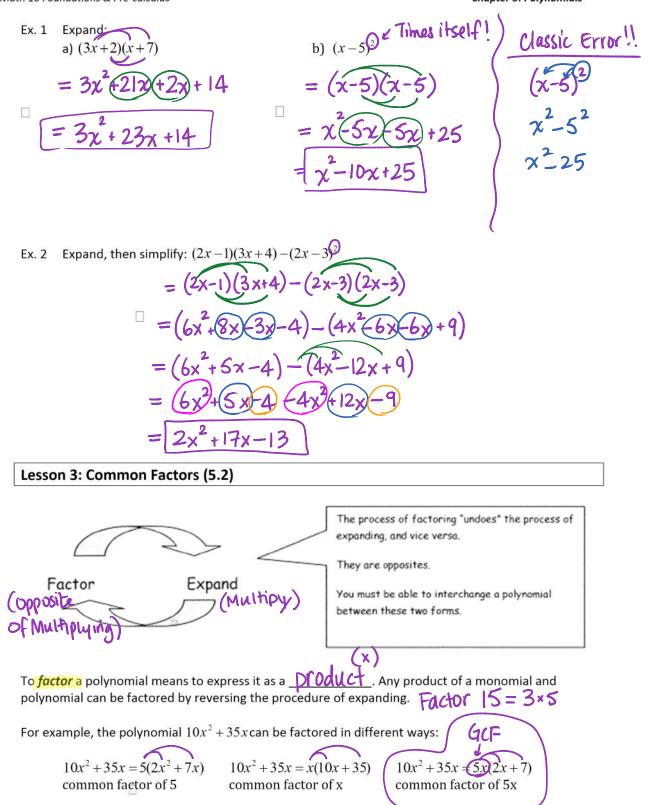
$$(a+b)(c+d) = ac+ad+bc+bd$$

To remember the distributive property, use the acronym FOIL.

F - First term in a	each bracket (ac)
O - Outside term	s (ad)
I - Inside terms	(bc)
L - Last term in e	ach bracket (bd)

For example:
$$(x+2)(2x-1)$$
 F O I L
= $(x)(2x) + (x)(-1) + (2)(2x) + (2)(-1)$
= $2x^2 - x + 4x - 2$
= $2x^2 + 3x - 2$

Chapter 5: Polynomials



Chapter 5: Polynomials

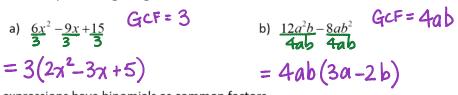
To determine the remaining polynomial when factoring, divide each term by the greatest common factor.

Ex. 1 Determine the greatest common factor:

Polynomial	Greatest Common Factor	Remaining Polynomial	Factored Form
$9x^2 + 3x$	3x	$\frac{9\chi^{2}+3\chi}{3\chi}=3\chi+1$	3x(3x+1)
2 <i>a</i> – 4	2	$\frac{2a-4}{2} = a-2$	2(a-2)
$12xy - 6x^2 + 2xy^2$	2x	$\frac{12xy-6x^{2}+2xy^{2}}{2x}$	$2x(6y-3x+y^2)$
		$=6y-3x+y^2$	• • •

* We can always check our factoring by expanding back to the original question. *

Ex. 2 Factor by removing the greatest common factor:



Some expressions have <u>binomials</u> as common factors.

Ex. 3 <u>Factor</u> by removing the greatest common factor: Lo OPPOSITE of multiplying!

a)
$$3a(4a+5) - 2(4a+5) - 2(4a+5) - 2(4a+5) = (4a+5) = (x^2+3x-2)x + 5(x^2+3x-2) - 2(x^2+3x-2) - 2(x^2+3x-2) = (x^2+3x-2) - 2(x^2+3x-2) = (x^2+3x-2)(x+5)$$

= $(4a+5)(3a-2) = (x^2+3x-2)(x+5)$

Ex. 4 Expand, then simplify by factoring.
a)
$$4(2a-3b)-3(a+5b)$$

= $8a-12b-3a-15b$
= $5a-27b$ GCF = 1
Not factorable

b)
$$2x(3x^2-5xy)-5y(x^2-2y^2)$$

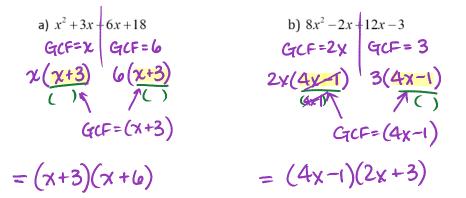
= $6x^3-10x^2y-5x^2y+10y^3$
= $6x^3-15x^2y+10y^3$ GCF= 1
Not factorable

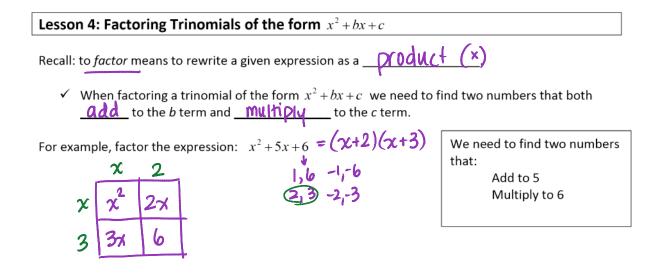
Chapter 5: Polynomials

Factoring by Grouping

Sometimes polynomials with 4 terms can be factored removing the GCF from 2 pairs of terms, then a binomial common factor.

Ex. 5 Factor the following polynomials by grouping.





Note: Always <u>Check</u> your work! We can expand our two binomials to see if we have factored correctly!

Check:
$$(x+3)(x+2) = \chi^2 + 2\chi + 3\chi + 6$$

= $\chi^2 + 5\chi + 6$

Chapter 5: Polynomials

Ex. 1 Factor (and check!):

a)
$$x^{2}+11x+24 = (\chi+3)(\chi+8)$$

b) $a^{2}+1a-12 = (a-3)(a+4)$
 $\chi \xrightarrow{3}{3} \xrightarrow{2}{3} \xrightarrow{2}{3} \xrightarrow{2}{3} \xrightarrow{2}{3} \xrightarrow{1}{2} \xrightarrow{1}{2} \xrightarrow{2}{3} \xrightarrow{1}{4} \xrightarrow{2}{3} \xrightarrow{1}{4} \xrightarrow{1}{6} \xrightarrow{1}{4} \xrightarrow{1}{2} \xrightarrow{1}{2} \xrightarrow{1}{6} \xrightarrow{1}{3} \xrightarrow{1}{4} \xrightarrow{1}{3} \xrightarrow{1}{6} \xrightarrow{1}{2} \xrightarrow{1}{2} \xrightarrow{1}{6} \xrightarrow{1}{2} \xrightarrow{1$

Sometimes an expression will contain a <u>GCF</u> that we can remove before factoring the trinomial.

Ex. 2 Factor (and check!):
a)
$$\frac{5x^2 - 35x + 60}{5}$$
 G(F = 5
= $5(x^2 - 7x + 12)$
 $\frac{x - 3}{4} = \frac{5(x - 3)(x - 4)}{1, 12}$
 $\frac{x^2 - 3x}{1, 12}$
 \frac

Chapter 5: Polynomials

Lesson 5: Factoring Trinomials of the Form $ax^2 + bx + c$

✓ To factor a trinomial of the form $ax^2 + bx + c$ we need to find two numbers that both **add** to _____ and **multiply** to _____.

For example, factor the expression
$$3x^{2} + 17x + 10 = (3x+2)(x+5)$$

 $3x^{2} + 17x + 10 = (3x+2)(x+5)$
 $x - 3x^{2} + 15 = 17$
 $3x^{2} + 17x + 10$
 $3x^{2} + 15x + 2x + 10$
 $3x(x+5) - 2(x+5)$
 $(x+5)(3x+2)$

In general (Decomposition):

- 1. Find two numbers that add to b and multiply to ac.
- 2. Rewrite the expression with the x term replaced with the two found numbers.
- 3. Factor the first two terms and last two terms separately with their GCFs.
- 4. Factor the common binomial GCF from both terms.

 \rightarrow Check your work by expanding!

Ex. 1 Factor (and check!):
a)
$$3x^2 - 10x + 8$$
 $-4 + -6 = -10$
 $-4 \times -4 = 24$
 $= 3x^2 - 4x - 6x + 8$ $1,24$
 $= x(3x - 4) - 2(3x - 4)$ $4a - 8a^2 - 2a - 5$ $-2 - 2 + 20 = 18$
 $2a - 5 - 2 - 2 = -40$
 $4a - 8a^2 - 20a$ $1, -40 - 2, -20 = -40$
 $4a - 8a^2 - 20a$ $1, -40 - 2, -20 = -40$
 $4a - 8a^2 - 20a$ $-1 = -2a - 5$ $5, -8$
 $= (2a + 5)(4a - 1)$

Chapter 5: Polynomials

Note: If the two numbers that add to b and multiply to ac are not immediately obvious, check all the factors of ac until you find the write pair that add to b.

Ex. 2 Factor (and check!):
a)
$$6a^{4} + 7a^{2} - 10$$

 $2\sqrt{3}$ $-\frac{5}{5} + \frac{12}{2} = 7$
 $= 6a^{4} - 6a^{2} + 12a^{2} - 10$ $5 \times \frac{12}{5} = -60$
 $= a^{2}(6a^{2} - 5) + 2(6a^{2} - 5)$
 $= (6a^{2} - 5)(a^{2} + 2)$ $\frac{1}{5}, \frac{10}{5}, \frac{12}{5}, \frac{12}{5}$
 $= 2(5\sqrt{-1})(\sqrt{-2})$ $\frac{1}{5}(\sqrt{-1})$
 $= 2(5\sqrt{-1})(\sqrt{-2})$ $\frac{1}{5}(\sqrt{-1})$
 $= 2(5\sqrt{-1})(\sqrt{-2})$ $\frac{1}{5}(\sqrt{-1})$

Remember, you can have several combinations of types of factoring, so always be on the lookout for all kinds:

Lesson 6: Factoring a Difference of Squares

A polynomial that can be expressed in the form $x^2 - y^2$ is called a *difference of squares*. Note: It is literally the subtraction (difference) of two squares.

Ex. 1 Factor (and check!):
a)
$$36x^{2} - 49 = (6x+7)(6x-7)$$
 b) $16m^{2} - 121 = (4m+11)(4m-11)$
no χ term (0χ) no m
 $6\chi - \frac{7}{36\chi^{2}} + \frac{42\chi}{36\chi^{2}} + \frac{42\chi}{36\chi$

Chapter 5: Polynomials

Expand: $(x+y)(x-y) = \chi^2 - \chi y + \chi y - y^2$ = $\chi^2 - y^2$

Notice how the middle term cancels out. Using this pattern, you can always factor a difference of squares as:



Reminder: Always check for a <u>GUF</u> to remove before continuing. This is **always the first step** when factoring.

Provide the contract of the c Ex. 2 Factor (and check!): GCF=3a