Ch. 3 & 4 Solutions

May-05-16 9:39 AM

Chapter 3: Quadratic Functions

** Recall the vertex form of a quadratic function: $y = a(x - p)^2 + q$ **

1. Match each characteristic with the correct function.

Characteristic

Quadratic Function

I) vertex in quadrant III

A $v = -5(x-2)^2 - 3$

II) opens downward

B $v = 3(x+3)^2 + 5$

III) axis of symmetry: x = 3 _____ C $y = 2(x+2)^2 - 3$

IV) range: $\{y | y \ge 5, y \in R\}$

D $v = 3(x-3)^2 - 5$

2. Classify each as a quadratic function or a function that is not quadratic.

y = (x+6)-1

Not Quadratic

b) $y = -5(x+1)^2$ Quadratic

c) $y = \sqrt{(x+2)^2 + 7}$ Not Quadratic

d) $y+8=x^2$

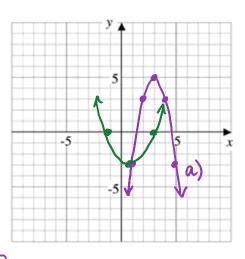
Quadratic

 \Box 3. Sketch the graph of the following quadratic functions:

a) $v = -2(x-3)^2 + 5$

b) opens upward, vertex at (1, -3), one x-intercept at the point (3,0). Write its equation.

a) vertex: (3,5)stretch = -2


b) vertex: (1,-3)

x-int: (3,0) + other @ (-1,0)

from Symmetry

equation: $y=a(x-1)^2-3$ \Rightarrow plug in (30) to find a $0=a(3-1)^2-3$

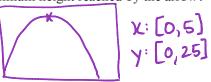
0= 4a-3 3=4a

1

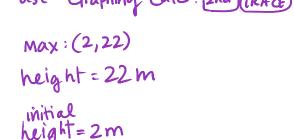
4. Identify the vertex, domain, range, axis of symmetry, x-intercepts and y-intercept for each quadratic function.

a)
$$f(x)=-2x^2-6$$

Vertex: $(0,-6)$
domain: $x \in \mathbb{R}$
range: $Y = -6$
 $0 = -2x^2-6$
 $6 = -2x^2$
axis: $x = 0$
 $y = -6$
 $y = -6$


b)
$$f(x) = \frac{1}{2}(x+8)^2 + 6$$

vertex: $(-8/6)$
domain: $x \in \mathbb{R}$
range: $y \ge 6$
 $axis: x = -8$
 $y = 0$
 $-6 = \frac{1}{2}(x+8)^2 + 6$
 $-6 = \frac{1}{2}(x+8)^2$
 $-6 = \frac{1}{2}(x+8)^2$


5. Rewrite each function in the form $y = a(x-p)^2 + q$. Compare the graph of each function to the graph of $y = x^2$.

a)
$$y = (x^{2} + 10x) + 18$$

 $y = (x^{2} - 10x) + 18$
 $y = (x^{2} - 10x + 25 - 25) + 18$
 $y = (x^{2} - 10x + 25) - 25 + 18$
 $y = (x^{2} - 10x + 25) - 25 + 18$
 $y = (x^{2} - 10x + 25) - 7$
 $y = (x^{2} - 10x + 25) - 7$
 $y = (x^{2} - 10x + 25) - 7$
 $y = (x^{2} - 10x + 25) - 7$
 $y = (x^{2} - 10x + 25) - 7$

b)
$$y=3x^2-6x+5$$

 $y=3(x^2-2x)+5$
 $y=3(x^2-2x+1-1)+5$
 $y=3(x^2-2x+1)-3+5$
 $y=3(x-1)^2+2$
Vertex: $(1,2)$

6. a) The approximate height, h, in meters, of an arrow shot into the air with an initial velocity of 20 m/s after t seconds can be modeled by the function $h(t) = -5t^2 + 20t + 2$. What is the maximum height reached by the arrow?

b) From what height was the arrow shot? $\sqrt{-in+} > 1$: Value: x = 0

c) How long did it take for the arrow to hit the ground, to the nearest second?

$$x$$
-int $\rightarrow 2$: Zero $x = 4.097$ or 4 seconds

Chapter 4: Quadratic Equations

7. Solve by the indicated method.

FACTORING

a)
$$x^2-4x=-3$$

 $\chi^2-4\chi+3=0$
 $(\chi-3)(\chi-1)=0$

COMPLETING THE SQUARE

c)
$$2(x-3)^2-8=0$$

 $2(x-3)^2 = 8$
 $\sqrt{(x-3)^2} = 44$
 $x-3=\pm 2$
 $x=\pm 2+3$
 $x=5,1$

b)
$$9x^2+6x-8=0$$

 $9x^2+12x-6x-8=0$
 $3x(3x+4)-2(3x+4)=0$
 $(3)(x+4)(3x-2)=0$
 $\boxed{x=-4,2}$

f) $2x^2 - 4x - 3 = 0$

QUADRATIC FORMULA (leave exact answers please!)

$$e) \quad 3x^2 + 19x - 14 = 0$$

$$\chi = -19^{\frac{1}{2}}\sqrt{(19)^{2}-4(3)(-14)}$$

$$= -19^{\frac{1}{2}}\sqrt{529}$$

$$= -19^{\frac{1}{2}}\sqrt{529}$$

$$= -19^{\frac{1}{2}}23 = \frac{2}{3} \text{ and } -7$$

$$\chi = -(-4)^{\frac{1}{2}} \sqrt{(-4)^2 - 4(2)(-3)} \qquad \sqrt{40}$$

$$= 4^{\frac{1}{2}} \sqrt{40}$$

$$= 4^{\frac{1}{2}} \sqrt{40} \qquad 2^{\frac{1}{2}} \sqrt{20}$$

$$= 4^{\frac{1}{2}} \sqrt{10} - 2^{\frac{1}{2}} \sqrt{10}$$

8. The sum of the squares of three consecutive integers is 194. What are the integers?

Lyeq. (1,2,3 or 7,8,9,...

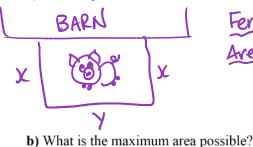
$$\chi^2 + (\chi+1)^2 + (\chi+2)^2 = 194$$

FOIL FOIL
 $\chi^2 + \chi^2 + 2\chi + 1 + \chi^2 + 4\chi + 4 = 194$
 $3\chi^2 + 6\chi + 5 = 194$
 $3\chi^2 + 6\chi - 189 = 0$ (÷3)
 $\chi^2 + 2\chi - 63 = 0$ Integers are
 $(\chi+9)(\chi-7) = 0$ 7,8,9
 $\chi = -9$ or 7 or $-9,-8,77$

9. Use the discriminant to determine the nature of the roots for each quadratic equation.

a)
$$x^2-6x+3=0$$

 b^2-4aC
= $(-6)^2-4(1)(3)$
= 24 (>0)
 > 0 Solutions


a)
$$x^{2}-6x+3=0$$
 b) $x^{2}+22x+121=0$ c) $-x^{2}+3x=5 \rightarrow -x^{2}+3x-5=0$

$$b^{2}-4ac \qquad b^{2}-4ac \qquad b^{2}-4ac \qquad (3)^{2}-4(-1)(-5)=0$$

$$= 24 \quad (>0) \qquad = 0 \quad (=0) \qquad = -11 \quad (\neq 0)$$

$$\Rightarrow 2 \text{ Solutions} \qquad \Rightarrow 0 \text{ Solutions}$$

- 10. A pig pen is being designed against the side of a barn. There is a total of 70 m of fencing available.
 - a) Write a quadratic function to model the area of the pigpen.

Fence:
$$2x+y=70 \rightarrow y=70-2x$$

Avea: $A=xy$
 $A=x(70-2x)$
 $A=-2x^2+70x$

"Vertex"

$$A = -2(\chi^{2}(35)\chi + 30625 - 306.25)$$

$$= -2(\chi^{2} - 35\chi + 306.25) + 612.5$$

$$= -2(\chi - 17.5)^{2} + 612.5$$

$$= Max Area = 612.5$$

c) If the area is known to be exactly $320 \, m^2$ what are the dimensions of the pen?

$$320 = -2 x^{2} + 70x$$

$$2x^{2} - 70x + 320 = 0 \qquad (\div 2)$$

$$x^{2} - 35x + 160 = 0$$

-) use Quad. Formula or Calc.

$$\chi = 5.4$$
 $y = 70 - 2(5.4) = 59-18$

Dimensions: 5.41m by 59.2m