## Chapter 7 Re-Cap: Absolute Value

For a real number *a*, the **absolute value** is always the non-negative value of the number. We show absolute value with two vertical lines, like brackets.

$$5-2|-3|=5-2(3)$$

Ex. 1: 
$$|7| = 7$$
  $|-7| = 7$   $-|6-10| = -4$ 

In general:  $|a| = \begin{cases} a, a \ge 0 & + \\ -a, a < 0 & - \end{cases}$ 

Absolute values will require the use of **piecewise notation**. This is because the function is made up of two or more separate functions with its own domain and range. They will combine to the overall function.

Ex. 2: Determine the piecewise notation for the expression

a) 
$$|4-x| = \begin{cases} 4-x, & x \le 4 \\ -4+x, & x > 4 \end{cases}$$

a) 
$$|4-x| = \begin{bmatrix} 4-x & x \neq 4 \\ -4+x & x \neq 4 \end{bmatrix}$$
  
b)  $|2x-1| = \begin{bmatrix} 2x-1 & x \neq 2 \\ -2x+1 & x \neq 4 \end{bmatrix}$   
c)  $|4-x| = \begin{bmatrix} 4-x & x \neq 4 \\ -2x+1 & x \neq 4 \end{bmatrix}$   
c)  $|2x-1| = \begin{bmatrix} 2x-1 & x \neq 4 \\ -2x+1 & x \neq 4 \end{bmatrix}$   
d)  $|2x-1| = \begin{bmatrix} 2x-1 & x \neq 4 \\ -2x+1 & x \neq 4 \end{bmatrix}$   
d)  $|2x-1| = \begin{bmatrix} 2x-1 & x \neq 4 \\ -2x+1 & x \neq 4 \end{bmatrix}$   
e)  $|2x-1| = \begin{bmatrix} 2x-1 & x \neq 4 \\ -2x+1 & x \neq 4 \end{bmatrix}$   
e)  $|2x-1| = \begin{bmatrix} 2x-1 & x \neq 4 \\ -2x+1 & x \neq 4 \end{bmatrix}$   
e)  $|2x-1| = \begin{bmatrix} 2x-1 & x \neq 4 \\ -2x+1 & x \neq 4 \end{bmatrix}$ 

**Ex. 3:** Consider the absolute value function y = |2x-3|

- a) Sketch the graph.
- b) Express the graph with piecewise notation.

Sketch 
$$y=2x-3$$

$$y = \begin{cases} 2x-3, & x \ge 3/2 \\ -2x+3, & x < 3/2 \end{cases}$$

An invariant point is any point that remains unchanged when a transformation is applied to it.

## **Solving absolute value equations:**

- 1. Consider the positive and negative case for each absolute value:
- 2. Solve each case.
- 3. Check solution(s) by substituting the solution back into the ORIGINAL equation. Reject any that do not work.

Ex. 4: Solve 
$$|2x-5|=5-3x$$

Case  $+: 2x-5=5-3x$ 
 $5x-5=5$ 
 $5x=10$ 
 $x=2$ 

Partnersus

 $|2(2)-5|=5-3(2)$ 
 $|-1|=-1$ 
 $|2(0)-5|=5-3(0)$ 
 $|-5|=5$ 

Only  $\pi=0$ 

**Ex. 5:** Solve 
$$|x-10| = x^2 - 10x$$

Case +: 
$$\chi - 10 = \chi^2 - 10\chi$$

$$0 = \chi^2 - 11\chi + 10$$

$$0 = (\chi - 10)(\chi - 1)$$

$$\chi = 10, 1$$

$$0 = (\chi - 10)(\chi + 1)$$

$$\chi = 10, -1$$

$$0 = (\chi - 10)(\chi + 1)$$

$$\chi = 10, -1$$

$$0 = (\chi - 10)(\chi + 1)$$

$$\chi = 10, -1$$

$$1 - 10 = (1)^2 - 10(1) \times 1$$

$$|-1 - 10| = (1)^2 - 10(-1)$$

$$|-1 - 10| = (-1)^2 - 10(-1)$$

$$|-1 - 10| = (-1)^2 - 10(-1)$$

$$|-1 - 10| = (-1)^2 - 10(-1)$$