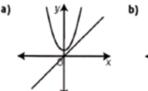
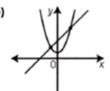
Ch. 8 & 9

May-05-16 9:40 AM

Chapter 8: Systems of Equations

1. Examine each system of equations and *match it* with a possible sketch of the system. You do not need to solve the systems to match them.

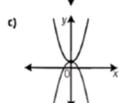


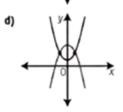


II)
$$y=x^2+1$$
 A

III)
$$y = x^2 + 1$$
 $y = -x^2 + 4$

IV)
$$y = x^2 + 1$$
 $y = x + 4$





2. Solve the system of linear-quadratic equations graphically.

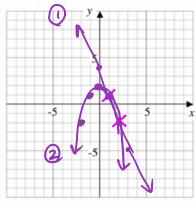
$$3x + y = 4$$

$$y = -x^2 + 2$$

$$0 y = -3x + 4$$

②
$$y = -x^2 + 2$$

vertex: (0,2) Stretch = - 1



& Substitution/Elimination

Solutions: (1,1) and (2,-2)

3. Algebraically determine the solution(s) to each system of quadratic-quadratic equations.

a)
$$y = 2x^{2} + 9x - 5$$

 $\sqrt{y} = 2x^{2} - 4x + 8$
 $\sqrt{y} = 2x^{2} - 4x + 8$

a)
$$y = 2x^{2} + 9x - 5$$

a) $(y = 2x^{2} - 4x + 8)$
 $0 = |3x - 13|$
 $13 = \frac{13}{13}x$ $x = 1$
 $13 = 2(1)^{2} + 9(1) - 5$
 $13 = 6$
 $(1, 6)$
b) $y = 12x^{2} + 17x - 5$
 $12x^{2} + 17x - 5 + x^{2} = 30x - 5$
 $13x^{2} - 13x = 0$
 $13x(x - 1) = 0$

4. The price, P, in dollars, per share, of a high tech stock has fluctuated over a 10-year period according to the equation $P = 14 + 12t - t^2$, where t is time, in years. The price of a second hightech stock has shown a steady increase during the same time period according to the relationship P = 2t + 30. Algebraically determine for what values the two stock prices will be the same.

$$P = -t^{2} + 12t + 14$$

$$P = 2t + 30$$

$$O = -t^{2} + 10t - 16$$

$$O = t^{2} - 10t + 16$$

$$O = (t - 8)(t - 2)$$

$$t = 8, 2$$

$$P = 2(8) + 30 = 46$$

$$P = 2(2) + 30 = 34$$

$$P = 2(2) + 30 = 34$$

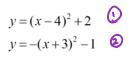
$$P = 2(2) + 30 = 34$$

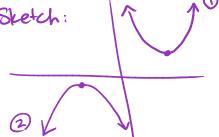
$$P=2(8)+30=46$$

 $P=2(2)+30=34$

The Price could be \$34 or \$46

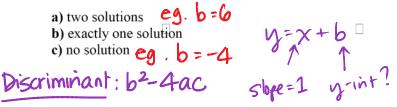
5. Explain how you could determine if the given system of quadratic-quadratic equations has zero, one, two, or an infinite number of solutions without solving or using technology.

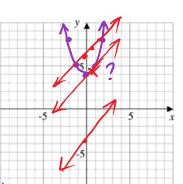




No Solution

- **6.** Given the quadratic function $y = x^2 + 4$ and the linear function $y \neq x + b$ determine all the possible values of b that would result in a system of equations with:





Substitution:

x+b=x2+4

$$0 = x^{2} - x + 4 - b$$

$$a^{2} - 4ac = (-1)^{2} - 4(1)(4 - b)$$

$$= 1 - 16 + 4b$$

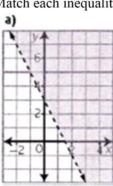
$$= 4b - 15$$

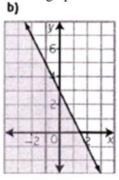
$$1 = b$$

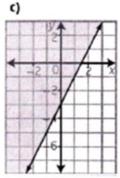
$$1 = b$$

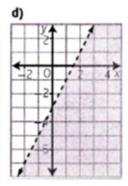
Chapter 9: Linear & Quadratic Inequalities

7. Match each inequality with its graph.

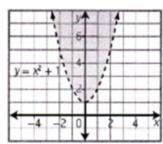




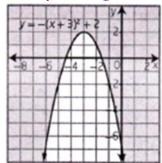




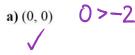
- $\begin{array}{c|c}
 -2x+y<-3 & D \\
 y<2x-3
 \end{array}$ I)
- III) $-2x-y \ge -3$ B -2x+32y
- II) $2x-y \le 3$ C $2x-3 \le y$ IV) 2x+y>3 A y>-2x+3
- 8. Write an inequality to describe each graph, given the function defining the boundary parabola.
 - a) $\gamma > \chi^2 + 1$

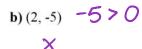


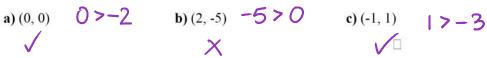
Y > -(x+3)2+2



9. Determine if each test point is a part of the solution region for the inequality: y > x - 2



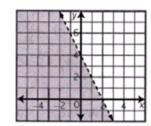




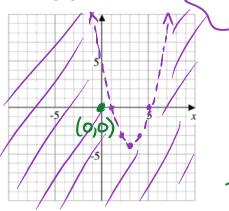
10. What linear inequality is shown in the graph?

$$y=mx+b$$

$$y=-2x+4$$



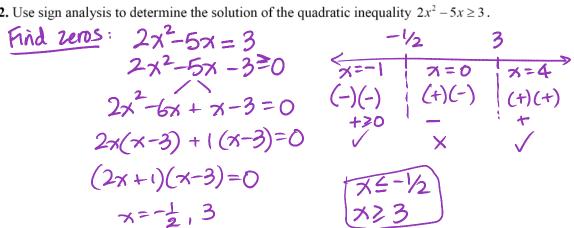
11. Sketch the graph of $y < x^2 - 6x + 5$. Use a test point to verify the solution region.



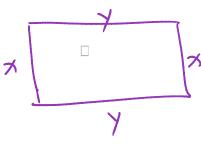
 \Rightarrow Complete the square $y = (x^2 - 6)x^2 + 5$ $(-\frac{6}{2})^2$ $=(x^2-6x+9(-9))+5$ $=(\chi^2-6\chi+9)-9+5$ $=(x-3)^2-4$

Test: 045 V

12. Use sign analysis to determine the solution of the quadratic inequality $2x^2 - 5x \ge 3$.



13. Suppose a rectangular area of land is to be enclosed by 1000 m of fence. If the area is to be greater than 60 000 m^2 , what is the range of possible widths of the rectangle?



Fence:
$$2x + 2y = 1000$$
 (+2)
 $x + y = 500 \rightarrow y = 500 - x$

Area:
$$A = xQ$$

A = $x(500-x)$
 $A = -x^2 + 500x$
 $60000 < -x^2 + 500x$

Find zeros $x^2 - 500x - 60000 = 0$

Test regions $(x - 600)(x + 100) = 0$

Test regions $(x - 100)(x + 100) = 0$

X>600m