L1 - Arithmetic Sequences

12:36 PM

Unit 8: Sequences \& Series

Lesson 1 Arithmetic Sequences

\rightarrow What is a sequence? order, after another, pattern

$$
\begin{array}{ll}
\text { Finite: } & 1,2,3 \\
\text { Infinite: } & 1,2,3, \ldots
\end{array}
$$

$$
\begin{array}{r}
b_{n}=\text { term value } \\
n=\text { term place } \\
\quad \text { start © } n=1
\end{array}
$$

Eg.1. Find the first three terms of the sequence defined as $b_{n}=2-\frac{1}{n^{2}}$
$n=1: \quad b_{1}=2-1 / 1^{2}=1$

$$
n=1: \quad b_{1}=2-1 / 1^{2}=1
$$

$$
n=2: \quad b_{2}=2-1 / 2^{2}=7 / 4
$$

$$
n=3: \quad b_{3}=2-1 / 3^{2}=17 / 9
$$

$1, \frac{7}{4}, \frac{17}{9}, \ldots$
Eg2. Determine the pattern of the number sequence. Complete the sequence.

$$
\begin{aligned}
& 3,7,11,15,19,23 \\
& +4+4+4
\end{aligned}
$$

Arithmetic Sequences: go up by a common difference (d) $d=$ subtract 2 consecutive terms. eg. $d=7-3$

Eg3. Determine the common difference of the following arithmetic sequence.
а) $1.2,-1,-3.2,-5.4, \ldots$
b) $-123,-107,-91, \ldots$

$$
d=-1-1.2
$$

$$
d=-107-(-123)
$$

$$
=-2.2
$$

$$
=16
$$

General formula for arithmetic sequence: $\quad u_{n}=u_{1}+(n-1) d$-provided
where $\quad u_{1}$ represents the first term;
d represents the common difference;
n represents the number of terms in a sequence; and u_{n} represents the value of the $\mathrm{n}^{\text {th }}$ term.

$$
\begin{aligned}
d= & u_{n}-u_{n-1} \\
& \left(\text { eg. } \cdot u_{2}-u_{1}\right)
\end{aligned}
$$

Eg4. Consider the arithmetic sequence

$$
\begin{aligned}
& u_{1} \\
& \underset{\sim}{\downarrow}+11=d \\
& -2,9,20,31, \ldots
\end{aligned}
$$

a) Determine a general formula for the given sequence.

$$
\text { use: } u_{n}=u_{1}+(n-1) d \quad u_{n}=-2+(n-1) \|
$$

b) Using the formula obtained from (a), determine the $100^{\text {th }}$ term.

$$
\begin{aligned}
& u_{100}=11(100)-13 \\
& u_{100}=1087
\end{aligned}
$$

Eg. Given the following arithmetic sequence:
a) Determine a formula for the general term, u_{n}.

$$
\begin{aligned}
& u_{n}=u_{1}+(n-1) d \\
& u_{1}=-170 \quad d=20 \\
& u_{n}=-170+(n-1) 20 \\
& u_{n}=20 n-190
\end{aligned}
$$

b) Determine the number of terms in the sequence when it reaches $1110 \leftarrow u_{n}$

$$
1110=20 n-190
$$

$$
1300=20 n
$$

$$
n=65 \leftarrow \mathbb{Z}^{+}
$$

Eg6. The arithmetic sequence 7, \qquad -93 has 51 terms. Find d.

$$
\begin{array}{lll}
\begin{array}{ll}
u_{n}=u_{1}+(n-1) d & -93=7+(51-1) d
\end{array} \\
\begin{array}{lll}
u_{1}=7 & -100=50 d & \\
u_{n}=u_{51}=-93 & -2=d & \\
n=51 & & \begin{aligned}
u_{n} & =7+(n-1)(-2) \\
& =7+(51-1)(-2) \\
& \\
&
\end{aligned}
\end{array} \begin{aligned}
\text { check: }
\end{aligned}
\end{array}
$$

Eg 7 . Write the general term of an arithmetic sequence with the following condition.

$$
u_{3}=61 \text { and } u_{10}=1275,68,61,54,47,40,33,26,19,12
$$

Then, find the arithmetic means between u_{3} and u_{10} (i.e. the terms in between).

$$
\begin{aligned}
& u_{n}=u_{1}+(n-1) d \quad \text { elimination } \\
& 61=u_{1}+(3-1) d \rightarrow 61=u_{1}+2 d \quad u_{n}=75+(n-1)(-7)
\end{aligned}
$$

$$
\begin{aligned}
& 61=u_{1}+\left(3-12=u_{1}+(10-1) d \rightarrow \frac{(12}{}=u_{1}+9 d\right) \\
& 49=-7 d \\
&-7=d
\end{aligned}
$$

$$
\begin{aligned}
& \text { Arithmetic Means: } \\
& 54,47,40,33,26,19
\end{aligned}
$$

Practice: p. 80 \# 1, 2

$$
\text { p. } 82 \# 1,2,3-8 a, c, 9-12
$$

