L1-Quadratic Inequalities

11:25 AM

Quest 5: Dec. 15
5 Lessons + Review
Equations \& Inequalities
Lesson 1: Quadratic \& Polynomial Inequalities

Consider $x^{2}-4 x-5 \geq 0$
We already know how to solve $x^{2}-4 x-5=0$

$$
(x-5)(x+1)=0 \rightarrow x=5,-1
$$

What about $x^{2}-4 x-5>0$?
Now we must consider where the corresponding function $x^{2}-4 x+5 \geq y$ is positive or negative.

Method 1: Graphically
Ex. 1: Solve $x^{2}-4 x-5 \geq 0$
Zeros: 5,-1
Sketch: $x^{2}-4 x-5=y$

Method 2: Roots and Test Points
Ex. 2: Solve $x^{2}+5 x-6<0$
(1) Solve: $x^{2}+5 x-6=0$

$$
\begin{aligned}
& (x+6)(x-1)=0 \\
& x=-6,1
\end{aligned}
$$

(2)

Method 3: Sign Analysis
Ex. 3: $x^{2}-2 x-3>0$
(1) Solve: $x^{2}-2 x-3=0$

$$
\begin{aligned}
& (x-3)(x+1)=0 \\
& x=3,-1
\end{aligned}
$$

$$
\begin{aligned}
(10)^{2}-4(10)-5 & \geq 0 \\
55 & \geq 0
\end{aligned}
$$

$$
x<-1
$$

$$
x>3
$$

Ex. 4: Solve $x^{2}-4 x>10$ using any method. (1) Solve: $\begin{array}{cc}x^{2}-4 x-10>0 \quad & x^{2}-4 x-10=0< \\ \text { Doesn't } \\ \text { Factor... }\end{array}$
(2)

${ }^{56} \quad x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-10)}}{2(1)}$
$2_{28}^{\wedge_{2}}=\frac{4 \pm \sqrt{56}}{2}=\frac{4 \pm 2 \sqrt{14}}{2}=2 \pm \sqrt{14}$
$2{ }^{2}(5.74$ and -1.74$)$
Polynomial Equations \& Inequalities

$$
\begin{aligned}
& x<2-\sqrt{14} \\
& x>2+\sqrt{14}
\end{aligned}
$$

Solving polynomial equations \& inequalities follows the same process as with quadratic equations \& inequalities. We often must employ thefactor theorem to help us find the zeros of the polynomial.

Ex. 5: Solve the following polynomial equations. Leave any solutions) as exact values.

Ex. 6: For the following polynomial functions state the intervals where $f(x)=0, f(x)>0$ and $f(x)<0$.

$$
\begin{aligned}
& f(x)=0: x=-1,2,3 \\
& f(x)>0:-1<x<2, x>3 \\
& f(x)<0: x<-1,2<x<3
\end{aligned}
$$

PRACTICE: Quadratic \& Polynomial Inequalities Worksheet

