L1 - Solving by Graphing/Factoring

11:51 AM

Quadratic Equations
Lesson 1
Solving Quadratic Equations by Factoring \& Graphing

When the graph of a quadratic function $f(x)=a x^{2}+\mathrm{b} x+\mathrm{c} \quad$ intersects the x-axis, the x-coord of these points are considered the roots) of its quadratic equation $a x^{2}+b x+c=0$. Quad.

$$
\rightarrow a k a \text { "Zeros" }
$$

"Solutions" of any quadratic equation $a x^{2}+b x+c=0$ are called roots or zeros of the \rightarrow "Solve" corresponding function. Graphically, they correspond to the x-intercepts (where $y=0$).

Possible number of solutions:
i)

ii)

1 solution
iii)

0 solutions

Eg1: Solve the quadratic equations again by graphing their corresponding functions.
a) $x^{2}+2 x * 3=0 \rightarrow$ Corresponding
b) $-4 x^{2}+1=0$
\rightarrow Corr. Func.

$$
\begin{aligned}
& y=-4 x^{2}+1 \\
& (p, q)=(0,1) \\
& a=-4 \\
& \rightarrow G D C \\
& x=-0.5,0.5
\end{aligned}
$$

As seen with quadratic functions, we can also use factoring to find the roots of an equation.
Eg. 2: Solve the following quadratic equations by factoring. Check your solutions).

$$
\begin{aligned}
& \text { must }=0 \\
& \text { a) }-4 m^{2}+24 m=0 \\
& \text { "zeros" } \\
& \text { b) } x^{2}-6 x+9=0 \\
& \begin{array}{cc}
-4 m(m-6)=0 \\
\downarrow & \downarrow \\
-4 m=0 & m-6=0 \\
m=0 & m=6
\end{array} \\
& \begin{array}{c}
\left.\begin{array}{c}
\text { (zero } \\
\text { Product } \\
\text { Property }
\end{array}\right)
\end{array} \\
& \begin{array}{c}
(x-3)(x-3)=0 \\
\downarrow \\
x-3=0 \\
x=3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } x^{2}-9 x+20=0 \\
& (x-4)(x-5)=0 \\
& x=4,5
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \frac{12 x^{2}}{12}-\frac{48}{12}=\frac{0}{12} \\
& x^{2}-4=0 \\
& (x+2)(x-2)=0 \\
& x=-2,2
\end{aligned}
$$

$$
\begin{aligned}
& 72 \rightarrow-9,8 \\
& \text { d) } 6 x^{2}-17 x+12=0 \\
& \left.\frac{(6 x-9)}{3}\right) \frac{(6 x-8)}{2} \\
& (2 x-3)(3 x-4)=0 \\
& 2 x^{2}-3=0 \quad 3 x-4=0 \\
& x=3 / 2 \quad x=4 / 3
\end{aligned}
$$

f) $a^{2} x^{4}-1=0$

$$
\begin{array}{ll}
\left(a x^{2}+1\right)\left(a x^{2}-1\right)=0 \\
a x^{2}+1=0 & a x^{2}-1=0 \\
a x^{2}=-1 & a x^{2}=1 \\
x^{2}=-\frac{1}{a} & x^{2}=\frac{1}{a} \\
x= \pm \sqrt{\frac{-1}{a}}, a<0 & x= \pm \sqrt{\frac{1}{a}}, a>0
\end{array}
$$

Eg.3: Solve by factoring $12(x+2)^{2}+24(x+2)+9=0$. Check your solutions).
Let $a=x+2$

$$
\begin{array}{cl}
\text { GCF }=3 \quad & 12 a^{2}+24 a+9=0 \\
& \frac{4 a^{2}+8 a+3=0}{(4 a+6)(4 a+2)} \\
& (2 a+3)(2 a+1)=0 \\
& a^{2}=-\frac{3}{2} \quad a=-\frac{1}{2}
\end{array}
$$

$$
\begin{aligned}
& \text { But... } a=x+2 \\
& \quad \Rightarrow x=a-2 \\
& x_{1}=\frac{-3}{2}-2 \quad x_{2}=-\frac{1}{2}-2 \\
& x_{1}=-\frac{7}{2} \quad x_{2}=\frac{-5}{2}
\end{aligned}
$$

Eg.4: Write a quadratic equation whose roots are $-\frac{1}{2}$ and $\frac{4}{3}$ in general form $a x^{2}+b x+c=0$ where a, b and c are integers.

$$
\begin{array}{ll}
x=-\frac{1}{2} & x=\frac{4}{3} \\
2 x=-1 & 3 x=4 \\
2 x+1=0 & 3 x-4=0 \\
(2 x+1)(3 x-4)=0 \\
6 x^{2}-5 x-4=0
\end{array}
$$

Homework: Worksheet: Solving Quadratics by Graphing \& Factoring

