L2 - Solving by Squaring

11:55 AM

Quadratic Equations $\int a x^{2}+b x+c=0$
Lesson 2 Solving Quadratics by Completing the Square
Sometimes factoring quadratic equations is not practical. We can use the method of completing the square from Chapter -3 to help us find the zeros and roots. Unit 2
Ex. 1: Solve $\sqrt{(x-1)^{2}} \stackrel{ \pm}{49}$ and check your solutions(s).

Check:

$$
\begin{array}{ll}
x-1 & = \pm 7 \\
x= \pm 7+1 \rightarrow & x_{1}=7+1 \\
& =8 \\
x_{2}=-7+1 & =-6
\end{array}
$$

$$
(8-1)^{2}=49
$$

$$
(-6-1)^{2}=49
$$

Ex. 2: Solve by completing the square:

$$
46
$$

$$
2 \wedge_{23}
$$

Solving quadratic equations by completing the square:

1. Set the equation equal to zero and complete the square (follow the steps in section 3.3).
2. Isolate the squared term.
3. Take the positive and negative square root.

4 . Solve the 2 corresponding equations for x.

$$
\begin{aligned}
& \text { a) } x^{2}-21=-10 x \quad « \text { Wort Factor... } \underbrace{\text { b) }}-2 x^{2}+4 x+9=0 \\
& x^{2}+10 x-21=0 \quad-2\left(x^{2}-2 x\right)+9=0 \\
& \left(x^{2}+10 x+25-25\right)^{2}-21=0 \quad-2\left(x^{2}-2 x+1-1\right)^{2}+9=0 \\
& \left(x^{2}+10 x+25\right)-25-21=0 \quad-2\left(x^{2}-2 x+1\right)+2+9=0 \\
& \begin{array}{l}
(x+5)^{2}-46=0 \\
\sqrt{(x+5)^{2}}=\sqrt{46}
\end{array} \\
& x+5= \pm \sqrt{46} \\
& x= \pm \sqrt{46}-5 \\
& -2(x-1)^{2}+11=0 \\
& \begin{array}{ll}
-2(x-1)^{2} \\
\sqrt{(x-1)^{2}} & =-11 \\
=\frac{11}{2}
\end{array} \sqrt{\frac{11}{2}}=\frac{\sqrt{11}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{22}}{2} \\
& \text { Rationalize. } \begin{array}{r}
x= \pm \sqrt{\frac{11}{2}}+1 \\
x= \pm \frac{\sqrt{22}}{2}+1
\end{array}
\end{aligned}
$$

Ex. 3: A wide-screened television has a diagonal measure of 42 in . The width of the screen is 16 in . more than the height. Determine the dimensions of the screen to the nearest tenth of an inch.
$a^{2}+b^{2}=c^{2}$

$$
(h+16)^{2}+h^{2}=42^{2}
$$

$$
(h+16)(h+16)+h^{2}=1764
$$

$$
h^{2}+16 h+16 h+256+h^{2}=1764
$$

$$
\frac{2 h^{2}}{2}+\frac{32 h}{2}-\frac{1508}{2}=\frac{0}{2}
$$

$$
\begin{aligned}
& \text { Graphing } \rightarrow h^{2}+16 h-754=0 \\
& \text { Factoring } \\
& \text { C.the Square }
\end{aligned} \quad h=-36,6,20.6
$$

$$
\begin{aligned}
& h^{2}+16 h+64-64-754=0 \\
& (h+8)^{2}-818=0 \\
& (h+8)^{2}=818 \\
& h+8= \pm \sqrt{818} \\
& h= \pm \sqrt{818}-8 \\
& \text { height }=20, \text { bin. width }=36 \text {.bin. }
\end{aligned}
$$

An extraneous root is a solution that does not satisfy any initial restrictions. This often happens in word problems, since we usually need positive solutions.

$$
\begin{aligned}
& \text { Ex. 4: Solve by completing the square } \\
& \begin{array}{l}
\text { Solve by completing the square } \\
2 x^{2}+k x-4=0
\end{array}\left[\frac{1}{2}\left(\frac{k}{2}\right)\right]^{2}=\left[\frac{k}{4}\right]^{2}=\frac{k^{2}}{16} \\
& \begin{array}{l}
2\left(x^{2}+\frac{k}{2} x\right)-4=0 \\
2\left(x^{2}+\frac{k}{2} x+\frac{k^{2}}{16}-\frac{k^{2}}{16}\right)-4=0
\end{array} \quad \begin{array}{l}
2\left(x+\frac{k}{4}\right)^{2}=\frac{k^{2}+32}{8} \\
\sqrt{\left(x+\frac{k}{4}\right)^{2}}=\frac{ \pm k^{2}+32}{16}
\end{array} \\
& \begin{array}{l}
2\left(x^{2}+\frac{k}{2} x\right)-4=0 \\
2\left(x^{2}+\frac{k}{2} x+\frac{k^{2}}{16}-\frac{k^{2}}{16}\right)-4=0
\end{array} \quad \begin{array}{l}
2\left(x+\frac{k}{4}\right)^{2}=\frac{k^{2}+32}{8} \\
\sqrt{\left(x+\frac{k}{4}\right)^{2}}=\frac{ \pm}{\sqrt{k^{2}+32}} 16
\end{array} \\
& \begin{array}{l}
2\left(x^{2}+\frac{k}{2} x+\frac{k^{2}}{16}\right)-\frac{k^{2}}{8}-4=0 \\
\text { half } \downarrow \\
2(x+k)^{2}-k^{2}-32=0
\end{array} \\
& 2\left(x+\frac{k}{4}\right)^{2} \frac{-k^{2}-32}{8}=0 \\
& x+\frac{k}{4}=\frac{ \pm \sqrt{k^{2}+32}}{4} \\
& x=\frac{ \pm \sqrt{k^{2}+32}-k}{4}
\end{aligned}
$$

