L3 - Character of Polynomials

12:21 PM

Functions \& Polynomials

coefficients : $a_{n}, a_{n-1}, \ldots a_{1}$
Lesson 3: Character of Polynomials
A polynomial function is a function of the form: $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
where n is a whole number, and a is a real number.

\rightarrow in other words, the exponents cannot be a fraction, or negative.
Recall that the degree of a function is the highest power of x. The leading coefficient (a) is the coefficient of the highest power of x.

As we have seen before with quadratic functions, the zeros of a polynomial function correspond to the x-intercepts of the graph and to the roots of the corresponding equation $f(x)=0$.

Note: A polynomial function will have at most the same number of ze
We will number the 4 quadrants of a graph as: II
III

Even degree:
 Odd degree:

Ex. 1: State the degree, whether even or odd and the zeros of the polynomial function:
$(x)(x)(x)=x^{3}$
a) $f(x)=(x-1)(x+2)(x-4)$
b) $g(x)=x(x-1)^{2}(x+2)$

If a polynomial has a factor x - a that is repeated n times, then $x=a$ is a zero of multiplicity n . In Ex.1b), the zero at $x=1$ has multiplicity 2 .
\rightarrow What does this look like on a graph?

The END BEHAVIOUR of a function is the two quadrants that the graph starts and ends in (read from left to right). Each even degree function and odd degree function is the same!

Ex. 2: Identify the following characteristics for each polynomial function:

- the type of function and whether it is of even or odd degree
- the end behaviour of the graph of the function
- the number of possible x-intercepts
- the y-intercept

$$
a
$$

a) $g(x)=-x^{4}+2 x^{2}+7 x-5$
b) $f(x)=2 x^{5}+7 x^{3}+12$
degree $=4 \quad$ (quartic)
$\left.\begin{array}{l}\text { even } \\ a=-1\end{array}\right\} \not \neg$
end behave: : II, IV

$$
\begin{aligned}
\text { max } x-i n t & =4 \\
y-n \bar{n} t & =-5
\end{aligned}
$$

degree: 5 (quantic)
$\underset{a=2}{o d d}\}$ Kt
end behaviour: III, I
max $x-$ int $=5$

$$
y-\text { in } t=12
$$

Ex. 3: Sketch the (approx. graph of each polynomial function without graphing technology.
$(x)\left(x^{3}\right)(x)$
a) $f(x)=-x(x+2)^{3}(x-4)$
degree $=5 \quad$ (quintic)

ebb. : II, IV multiplicity $=3$
zeros: 0, $(2,-2,-2,4$
4 -int $=-0(0+2)^{3}(0-4)=0$
b) $y=-2(x+1)^{2}(x-2)(x-3)^{2}$
degnee-5 (quintic)
odd
$a=-2$
$e \cdot b=$ T, 四

$$
\begin{aligned}
& \text { zeros }=-1,-1,2,3,3 \\
& \begin{aligned}
4-\text { int } & =-2(0+1)^{2}(0-2)(0-3)^{2} \\
& =36
\end{aligned}
\end{aligned}
$$

Ex. 4: Given the graph of a polynomial $y=f(x)$, determine a possible equation.

Practice: H3 - Character of Polynomials Worksheet

