L3-Quadratic Formula

October-15-15
11:57 AM

Quadratic Equations

Lesson 3 The Quadratic Formula

any quadratic
Eg1. Solve by completing the square: $a x^{2}+b x+c=0$ equation!

$$
\begin{aligned}
& a x^{2}+b x+c=0 \rightarrow\left[\frac{1}{2}\left(\frac{b}{a}\right)\right]^{2}=\left[\frac{b}{2 a}\right]^{2}=\frac{b^{2}}{4 a^{2}} \\
& \begin{array}{l}
a\left(x^{2}+\left(\frac{b}{a}\right) x\right)+c=0 \\
a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}\right)+c=0
\end{array} \quad \begin{array}{l}
a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a} \\
\sqrt{\left(x+\frac{b}{2 a}\right)^{2}}=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
\end{array} \\
& a\left(x^{2}+\left(\frac{b}{a}\right) x+\frac{b^{2}}{4 a^{2}}\right)-\frac{b^{2}}{4 a}+\frac{4 a}{4 a}=0 \\
& a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}+4 a c}{4 a}=0 \\
& \text { (provided) }\llcorner!!
\end{aligned}
$$

Note: The quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ can solve any quadratic equation.
Eg. Solve by the quadratic formula.

An alternative to check for the number of solutions of a quadratics (and whether the quadratic is solvable or has no solution) is to calculate its discriminant (Δ for "delta").
how many?
The expression $\Delta=b^{2}-4 a c$ determines the " nature" of the roots for any quadratic function.
For any quadratic function $f(x)=\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$ with $\mathrm{a} \neq 0$, its equation has:
i) two distinct real solutions if $\Delta>0 \quad \pm \sqrt{t}$
ii) one real solution (a double root) if $\Delta=0 \pm \sqrt{0}$
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
iii) no real solution (two imaginary roots) if $\Delta<0 \pm \sqrt{-}$

Eg2. Use the discriminant to check for the number of real solutions for each equation.
a) $x^{2}+2 x+3=0$
b) $4 x^{2}-9=0$

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =(2)^{2}-4(1)(3) \\
& =-8
\end{aligned}
$$

$$
\Delta=b^{2}-4 a c
$$

$$
=(0)^{2}-4(4)(-9)
$$

$$
=144
$$

$\Delta \angle O \rightarrow$ No Real Roots

$$
\Delta>0 \rightarrow 2 \text { Distinct Real Roots }
$$

Eg. For what values of k does $x^{2}+10 x+k=0$ have 2 equal real roots?

$$
\begin{array}{lll}
b^{2}-4 a c=0 & a=1 \quad b=10 & c=k
\end{array} \quad \rightarrow 1 \text { Solution: } \Delta=0
$$

Eg4. A rectangular garden has an area of 324 square metres. Is it possible to enclose the garden on all four sides using 70 m of fencing? Explain. $\longrightarrow 1$ s there a solution? $(\Delta!)$

Fence: $2 x+2 y=70$
$x+y=35$
$y=35-x$

Area: $\begin{aligned} 324 & =x y \\ 324 & =x(35-x)\end{aligned}$

$$
324=x(35-x)
$$

$$
324=35 x-x^{2}
$$

$$
x^{2}-35 x+324=0
$$

$$
\Delta=(-35)^{2}-4(1)(324)
$$

$$
=-71
$$

\rightarrow NO Solution
Practices: IB textbook p.73 \# 21-28
Quadratic Formula Worksheet
\therefore Not Possible
(Need move fence!)

