L3 - Quadratic Formula

October-15-15 11:57 AM

Quadratic Equations

Eg1. Solve by completing the square: $ax^2 + bx + c = 0$

The quadratic formula x =Note:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

can solve any quadratic equation. $\alpha x^2 + bx + C = 0$

Eg1. Solve by the quadratic formula.

An alternative to check for the number of solutions of a quadratics (and whether the quadratic is solvable or has no solution) is to calculate its discriminant (Δ for "delta").

The expression $\Delta = b^2 - 4ac$ determines the nature of the roots for any quadratic function.

For any quadratic function $f(x) = ax^2 + bx + c$ with $a \ne 0$, its equation has:

- two distinct real solutions if $\Delta > 0$
- one real solution (a double root) if $\Delta = 0$ ii)
- no real solution (two imaginary roots) if $\Delta < 0$ iii)

Eg2. Use the discriminant to check for the number of real solutions for each equation.

a) $x^2 + 2x + 3 = 0$

$$\Delta = b^2 - 4ac$$
=(2)^2 - 4(1)(3)

DCO → No Real Roots

b) $4x^2 - 9 = 0$

$$\Delta = 6^{2} - 40C$$
= (0)²-4(4)(-9)

- 144

△>0 -> 2 Distinct Real Roots

4 > 1 Solution: $\Delta = 0$

Eg3. For what values of k does $x^2 + 10x + k = 0$ have 2 equal real roots? a=1 b=10 C=K

 $b^2 - 4ac = 0$

$$(10)^2-4(1)(k)=0$$

- 100 4k = 0
 - -4k =-100

heck:
$$\chi^2 + 10 \chi + 25 = 0$$

 $(\chi + 5)^2 = 0$

$$(x+5)^2=0$$

r=-5 > | Solution

Eg4. A rectangular garden has an area of 324 square metres. Is it possible to enclose the Ly 1s there a solution? $(\Delta!)$ all four sides using 70 m of fencing? Explain.

Practices:

Fence: 2x+2y=70 Area: 324=xy x+y=35 324=x(35-x) y=35-x $324=35x-x^2$

 $x^2 - 35x + 324 = 0$

 $\Delta = (-35)^2 - 4(1)(324)$

=-71

~eibulos one

IB textbook p.73 # 21 - 28

Ouadratic Formula Worksheet

.: Not Possible

(Need move fence!)