L3 - Rational Equations \& Inequalities

12:25 PM

Equations \& Inequalities
Lesson 3: Rational Equations \& Inequalities

Solving Rational Equations!

1. Factor everything. (Simplify if possible)
2. Identify the non-permissible values
3. Multiply both sides of the equation by the lowest common denominator \rightarrow cancel
4. Solve by isolating the variable on one side of the equation denominators!

* 5. Check your answers (n.P.V.'s)

Ex.1: Solve each of the following equations.

$$
\begin{aligned}
& 4 x\left(\frac{x}{4}-\frac{7}{x}\right)=(3) 4 x, \frac{x \neq 0}{L C D=4 x} \\
& x^{2}-28=12 x \\
& x^{2}-12 x-28=0 \\
& (x-14)(x+2)=0 \\
& x=14,-2, x \neq 0
\end{aligned}
$$

b) $\frac{2}{z^{2}-4}+\frac{10}{6 z+12}=\frac{1}{z-2}$

Your Turn Solve. What are the non-permissible values?

Rational equations will often have applications with rates. These problems will often use the fact that any rate is in general: $R A T E=\frac{J O B}{T I M E}$

Ex. 3: Two friends share a paper route. Sheena can deliver the papers in 40 min . Jeff can cover the same route in 50 min . How long, to the nearest minute, does the paper route take if they work together?
(Sheen) $R_{5}=\frac{1}{40}$ Curbed: $R=1+1=5+4=922^{\text {per er rods }}$
(Jeff)
$R_{J}=\frac{1}{50}$
Combined: $R=\frac{1}{40}+\frac{1}{50}=\frac{5}{200}+\frac{4}{200}=\frac{9}{200}<$ minutes

$$
\begin{array}{r}
200 \times\left(\frac{9}{200}=\right. \\
x \neq 0
\end{array}
$$

Ex. 4: A group of friends go on a 3-h bike ride together. They ride 15 km with the wind at their backs, and then 15 km straight into the wind. The wind adds or subtracts $3 \mathrm{~km} / \mathrm{h}$ from their speed.
What is the average speed of the group of friends with no wind?

$$
\rightarrow T=\frac{D}{S}
$$

$$
\begin{gathered}
(x+3)(x-3)\left(\frac{15}{x+3}+\frac{15}{x-3}=3\right) \quad x \neq-3,3 \\
15(x-3)+15(x+3)=3(x+3)(x-3) \\
15 x-45+15 x+45=3 x^{2}-27 \\
0=3 x^{2}-30 x-27
\end{gathered}
$$

PRACTICE: Rational Equations Worksheet

$$
0=x^{2}-10 x-9
$$

Not Factorable...

$$
\begin{aligned}
x & =\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(-9)}}{2(1)} \\
& =\frac{10 \pm \sqrt{136}}{2} \\
& =10.8,-0,831
\end{aligned}
$$

Average speed: $10.8 \mathrm{~km} / \mathrm{h}$

