L4-Geometric \& Infinite Series
February-19-16
12:38 PM

Unit 8: Sequences \& Series
Lesson 4 Geometric \& Infinite Series

Geometric Series: Sum (t) of a geometric sequence.

$$
\text { eg. } 1+2+4+8+16+\ldots
$$

$S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}$
What is the restriction for this formula? \qquad $r \neq 1$

Eg1. Find the indicated term of the given geometric series. ${ }^{4}$
a) $2-6+18-54+\ldots \ldots$; find S_{10}.

$$
\begin{array}{ll}
\begin{array}{l}
u_{1}=2 \\
r=-3 \\
n=10
\end{array} & s_{10}=\frac{2\left((-3)^{10}-1\right)}{(-3-1)} \\
& s_{10}=-29524
\end{array}
$$

Eg2. For the following geometric series
a) Write a formula to express the sum for the series.

$$
\begin{aligned}
& u_{1}=3 \\
& r=\frac{6 / 5}{3}=\frac{6}{5} \times \frac{1}{3}=\frac{2}{5}
\end{aligned} \quad S_{n}=\frac{3\left(\left(\frac{2}{5}\right)^{n}-1\right)}{\frac{2}{5}-1}=\frac{3\left(\left(\frac{2}{5}\right)^{n}-1\right)-\frac{5}{2}}{-\frac{3}{5}}=-5\left(\left(\frac{2}{5}\right)^{n}-1\right)
$$

b) Using a calculator, find the sum if there are infinitely many terms.

$$
\begin{aligned}
& n=\infty \\
& \text { (choose a large } t \text {) }
\end{aligned}
$$

Observation: What happens to r^{n} as n approaches infinity? Keno's Paradox
With $S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}$, what happens if $r<1$ and n is large?

$$
\begin{aligned}
& \left(\frac{2}{5}\right)^{\infty} \approx 0 \\
& S_{\infty}=\frac{u_{1}(0-1)}{r-1}=\frac{u_{1}(-1)}{r-1}=\frac{-u_{1}}{r-1} \\
& -(-r+1)
\end{aligned}
$$

$$
\begin{array}{|cc}
\rightarrow S_{a}=\frac{u_{1}}{1-r} & \text { on n for for } \\
|r|<1 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { b) } 874.8+291.6+\ldots \ldots+1.2 ; \text { find } S_{n} \\
& \begin{array}{l}
u_{1}=874.8 \\
r=\frac{291.6}{874.8}=\frac{1}{3}
\end{array} \\
& \text { Finn: } \\
& u_{1}=874.8 \quad \text { Find } n: u_{n}=u_{1}(r)^{n-1} \\
& \begin{array}{ll}
r=\frac{291.6}{874.8}=\frac{1}{3} & 1.2=874.8\left(\frac{1}{3}\right) \\
729 & \frac{1}{3}=\left(\frac{1}{3}\right)^{n-1}
\end{array} \\
& \begin{array}{l}
\frac{1}{729}=\left(\frac{1}{3}\right)^{n-1} \\
3^{-6}=\left(3^{-1}\right)^{n-1}
\end{array} \\
& -6=-n+1 \\
& n=7 \\
& \begin{array}{r}
\left(\frac{1}{3}-\right. \\
3+\frac{6}{5}+\frac{12}{25}+\frac{24}{125}+\ldots
\end{array}
\end{aligned}
$$

Eg3. Find the sum of the following infinite geometric series.
a) $4-\frac{8}{5}+\frac{16}{25}-\ldots \ldots$
b) $0.0073+0.073+0.73+\ldots$

$$
\begin{aligned}
& r=\frac{-8}{5} \frac{-8}{4} \times \frac{1}{4}=\frac{-\frac{2}{5}}{5} \\
& \left.S_{\infty}=\frac{u_{1}}{1-r}=\frac{4}{1-\left(-\frac{2}{5}\right)}=\frac{20}{7}\right)
\end{aligned}
$$

$|r|<1$

$$
\left.r=\frac{0.073}{0.0073}=10 \leftharpoonup|r| \psi \right\rvert\,
$$

$\rightarrow S_{\infty}$ doesnt exist
"DIVERGENT"
"CONVERGENT"
Eg. A ball is dropped from a height of 3 m . It bounces back to 80% of its previous height.
a) Find the total vertical distance travelled by the ball when it hits the ground for the $6^{\text {th }}$

b) Find the total vertical distance travelled by the ball if the ball continues to bounce indefinitely.

$$
n=\infty
$$

$$
\text { Distance: } 2 \cdot S_{\infty}-3
$$

$$
=2\left(\frac{3}{1-0.8}\right)-3=27 \mathrm{~m}
$$

Eg5. Given the following infinite geometric series: $4+4 x+4 x^{2}+\ldots$
Determine x if $S_{\infty}=2-3 x$.

$$
\begin{array}{ll}
u_{1}=4 & s_{\infty}=\frac{u_{1}}{1-r} \\
r=\frac{4 x=x}{4} & (1-x)(2-3 x)=\frac{4}{1-x}(1-x) \\
s_{\infty}:|r|<1 & 2-3 x-2 x+3 x^{2}=4 \\
3 x^{2}-5 x-2=0
\end{array} \quad \begin{gathered}
(x-2)(3 x+1)=0 \\
x=2,-\frac{1}{3} \\
\text { not }|r|<1 \\
x=-\frac{1}{3}
\end{gathered}
$$

Practice: p. 96 \# 2, 4, 5, 6 \& Worksheet L4 - Exercises 4a/4b
 2. Which infinite geometric series have a sum? What is the sum?
$\begin{array}{ll}\text { a) } 8+4+2+1+\ldots & \text { b) } 27+18+12+8+\ldots \\ \text { c) } 20-15+11.25-8.4375+\ldots & \text { d) } 50-40+32-25.6+\ldots \\ \text { e) } 2+6+18+54+\ldots & \text { f) }-16+12-9+6.75-\ldots\end{array}$
3. Determine the sum of each infinite geometric series.
$\begin{array}{ll}\text { a) } 8+2+\frac{1}{2}+\frac{1}{8}+\ldots & \text { b) } 8-2+\frac{1}{2}-\frac{1}{8}+\ldots \\ \text { c) } 10+5+2.5+1.25+\ldots & \text { d) } 10-5+2.5-1.25+\ldots \\ \text { e) } 5+\frac{5}{3}+\frac{5}{9}+\frac{5}{27}+\ldots & \text { f) } 5-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}+\ldots \\ \text { g) } 60+30+15+7.5+\ldots & \text { h) } 5+2.5+1.25+0.625+\ldots \\ \text { 4. Determine the sum of the series } 12-6+3-1.5+\ldots\end{array}$
5. An oil well produces 25000 barrels of oil during its first month of
production. Suppose its production drops by 5% each month.
Estimate the total production before the well runs dry.
6. A ball is dropped from a height of 2.0 m to a floor. After each bounce, the
ball rises to 63% of its previous height.
a) What is the total vertical distance the ball has travelled after 5 bounces?
b) Estimate the total vertical distance the ball travels before it comes to rest.
3. Use the formula for S_{n} to determine the sum of the first 5 terms of each
geometric series.

a) $2+10+50+\ldots$	b) $4+12+36+\ldots$
c) $3+6+12+\ldots$	d) $24+12+6+\ldots$
e) $5+15+45+\ldots$	f) $80-40+20-\ldots$
4. Consider the geometric series $4+12+36+108+\ldots$	
a) Determine the 10 th term.	b) Determine the sum of the first 10 terms.
6. Determine the sum of the first 10 terms of each geometric series.	
a) $5+10+20+40+\ldots$ b) $5-10+20-40+\ldots$ c) $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots$ d) $1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots$ e) $5+\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+\ldots$ f) $5-\frac{5}{2}+\frac{5}{4}-\frac{5}{8}+\ldots$	
7. A doctor prescribes 200 mg of medication on the first day of treatment. The	
dosage is halved on each successive day. The medication lasts for seven	
days. To the nearest milligram, what is the total amount of medication	
administered?	d. Sixty-four players enter a tennis tournament. When a player loses a match,
the player drops out; the winners go on to the next round.	
Find as many different methods as you can to determine the total number	
of matches to be played until the champion is declared.	

10. Here are 3 levels in a school trip telephoning tree.

