## L4 - Laws of Logarithms

January-14-16
7:51 AM

## Unit 7: Exponents \& Logarithms

## Lesson 4 Laws of Logarithms

Warm-up: Evaluate or solve by re-writing in exponential form.
a) $\log _{5} 125$
b) $\log _{4} \sqrt[3]{4}$
c) $\log _{6} x=3$
d) $\log _{x} 9=\frac{1}{2}$

There are several laws that allow us to combine several logarithms into one statement. These laws will become extremely helpful when we start solving equations involving logarithms.

Since logarithms are exponents, the laws are all related to the laws of powers.
Exponent Laws:

| Product Law | $\log _{b} M N=\log _{b} M+\log _{b} N$ | $x^{M} x^{N}=x^{M+N}$ |
| :--- | :--- | :--- |
| Quotient Law | $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$ | $\frac{x^{M}}{x^{N}}=x^{M-N}$ |
| Power Law | $\log _{b}\left(M^{P}\right)=\underline{P}^{P} \log _{b} M$ | $\left(x^{M}\right)^{P}=x^{M P}$ |

Ex. 1: Write each expression in terms of individual logarithms of $x, y$ and $z$.
product
a) $\log _{5} \frac{x p}{z}=\log _{5} x+\log _{5} y-\log _{5} z$
quotient
b) $\log _{7} \sqrt[3]{x}=\log _{7} x^{(1 / 3)}=\frac{1}{3} \log _{7} x$
c) $\log \frac{x^{3}}{y \sqrt{z}}=\sqrt{\log x^{3}-\log y-\log \sqrt{z}}$

$$
=3 \log x-\log y-\frac{1}{2} \log z
$$

Ex. 2: Use the laws of logarithms to simplify into a single expression. Then evaluate.
product quotient
a) $\log _{6} 8 \oplus \log _{6} 9 \Theta \log _{6} 2$

$$
\text { b) } \log _{7 \sqrt{7}}>7^{1} \cdot 7^{\frac{1}{2}}
$$

$$
=\log _{6}\left(\frac{8 \cdot 9}{2}\right)=\log _{6} 36=2
$$

$$
=\log _{7} 73 / 2 \text { power }=7^{3 / 2}
$$

$$
=\frac{3}{2} \log _{7} 7=\frac{3}{2}(1)=\frac{3}{2}
$$

$$
\left.\begin{array}{rl}
\text { c) } 2 \log _{2} 12-\left(\log _{2} 6+\frac{1}{3} \log _{2} 27\right. \\
=2 \log _{2} 12-\log _{2} 6-\left(\frac{1}{3} \log _{2} 27\right. \\
=\log _{2} 12^{2} \Theta \log _{2} 6-\log _{2} 27^{\frac{1}{3}}
\end{array}\right)=\log _{2}\left(\frac{12^{2}}{6 \cdot 27^{\frac{1}{3}}}\right)
$$

Ex. 3: Write each expression as a single logarithm in simplest form. State any restrictions on the variable.

$$
\begin{aligned}
& \log _{7} x^{2}+\log _{7} x-\frac{5 \log _{7} x}{2} \\
= & \log _{7} x^{2} \Theta \log _{7} x \Theta \log _{7} x^{5 / 2} \\
= & \log _{7} \frac{x^{2} x^{1}}{x^{5 / 2}} \quad \frac{\text { Restrictions : }}{x>0} \\
= & \log _{7} \frac{x^{3}}{x^{5 / 2}} \\
= & \log _{7} x^{1 / 2} \text { or } \frac{1}{2} \log _{7} x
\end{aligned}
$$

$$
\text { b) } \log _{5}(2 x-2) \Theta \log _{5}\left(x^{2}+2 x-3\right)
$$

argument $>0$

$$
\begin{aligned}
& =\log _{5} \frac{(2 x-2)}{\left(x^{2}+2 x-3\right)} \\
& =\log _{5} \frac{2(x-1)}{(x-1)(x+3)} \\
& =\log _{5} \frac{2}{x+3}
\end{aligned}
$$

Restrictions:

$$
\begin{gathered}
2 x-2>0 \\
x>1
\end{gathered}
$$

Change of Base $\quad \log _{b} a=\frac{\log _{c} a}{\log _{c} b} \quad$ USUally


Ex. 4: Find each logarithm to 3 decimal points using your GDC.
a) $\log _{3} 7=\frac{\log _{10} 7}{\log _{10} 3} \approx 1.166$

Practice: Pg. 130: \# 50-68 (Omit \# 52, 58, 61)
0 mit 55
b) $\underset{\log _{e} 7}{ }=\frac{\log _{10} 7}{\log _{10} e} \approx 1.946$
'e' is an irrational number (similar to $\pi$ ) $e \approx 2.71828 \ldots$

