L4-Radicals

Equations \& Inequalities
Lesson 4: Radical Functions, Equations \& Inequalities

Radical Functions
Let's examine the function $y=\sqrt{x}$

x	y
0	6
1	1
4	2
9	3

Some general characteristics of the base radical function:
Domain: $\quad x \geq 0$ (or $x \in[0, \infty[)$ Range: $y \geq 0$
Start point: \qquad $(0,0)$ Endpoint: \qquad none (∞)
Shape: half sideways parabola
Radical Equations "radicand" ≥ 0
Ex.1: a) State the restrictions on \boldsymbol{x} in $5+\sqrt{2 x+1}=12$ if the radical is a real number.

$$
\begin{aligned}
2 x+1 & \geq 0 \\
x & \geq-\frac{1}{2}
\end{aligned}
$$

b) Solve $5+\sqrt{2 x+1}=12$

$$
\begin{aligned}
(\sqrt{2 x+1})^{\prime} & (7)^{2} \\
2 x+1 & =49 \\
2 x & =48 \\
x & =24
\end{aligned}
$$

$$
\text { *check: } 5+\sqrt{2(24)+1}=12
$$

$$
5+\sqrt{49}=12
$$

Ex. 2: Identify the restrictions on n in $n-\sqrt{5-n}=-7$. Then, solve the equation.

$$
\begin{aligned}
& 5-n \geq 0 \quad 5-n=(7+n)(7+n) \\
& 5 \geq n \\
& n-\sqrt{5-n}=-7 \\
& -\sqrt{5-n}=-7-n \\
& \rightarrow(\sqrt{5-n})^{2}=\underbrace{(7+n)^{2}}_{\text {FOLL! }} \\
& 5-n=49+14 n+n^{2} \\
& 0=n^{2}+15 n+44 \\
& 0=(n+11)(n+4) \\
& n=-11(-4 \\
& \text { extraneous } \\
& \text { root! } \\
& -11-\sqrt{5-(-11)}=-7 \\
& -11-4=-7 \quad x \\
& -4-\sqrt{5-(-4)}=-7 \\
& -4-3=-7
\end{aligned}
$$

To solve radical equations:

1. State any restrictions on the variables. (Not necessary as long as you CHECK your solutions)).
2. Isolate the radical. Square both sides.
3. Solve the remaining equation. Repeat step 2 if needed.

* 4. Check your solutions). Reject any extraneous roots.

Extraneous roots are solutions that do not satisfy any initial conditions.

Ex. 3: Solve $7+\sqrt{3 x}=\sqrt{5 x+4}+5$
Restrictions: $3 x \geq 0 \rightarrow x \geq 0 \quad\} x \geq 0$
Solve: $\underbrace{(2+\sqrt{3 x})^{2}}_{\text {Foll! }}=(\sqrt{5 x+4})^{2} \quad \begin{aligned} & (4 \sqrt{3 x})^{2}=(2 x)^{2} \\ & 16(3 x)=4 x^{2}\end{aligned}$
$(2+\sqrt{3 x})(2+\sqrt{3 x})=5 x+4$ $48 x=4 x^{2}$
$4+2 \sqrt{3} x+2 \sqrt{3 x}+3 x=5 x+4$
$4+4 \sqrt{3 x}+3 x=5 x+4$

$$
0=4 x(x-12)
$$

Radical Inequalities
$x=0,12$

To solve radical inequalities:

1. State any restrictions on the domain (only for even degree).
2. Solve the inequality algebraically.
3. Test regions in between domain values) and algebraic solutions).

Ex. 4: Solve $3+\sqrt{5 x-10} \leq 8$

Solve: $3+\sqrt{5 x-10}=8$

$$
\begin{aligned}
(\sqrt{5 x-10})^{2} & =(5)^{2} \\
5 x-10 & =25 \\
5 x & =35 \rightarrow x=7
\end{aligned}
$$

PRACTICE: Radical Functions, Equations and Inequalities Worksheet

