L4 - Remainder Theorem \& Division

12:22 PM

Functions \& Polynomials

Lesson 4: Remainder Theorem \& Polynomial Division
We can divide two polynomials using long division (as you've seen with integers) or synthetic division. When we perform this division, we can write a division statement:

$$
\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a} \quad \text { where: } P(x)=\text { dividend (polynomial being divided) }
$$

$2 3 \longdiv { 3 2 1 } \leftarrow Q$
$(x-a)=$ divisor (polynomial dividing)
$-23 \downarrow R \quad Q(x)=$ quotient (result of division)
$-\frac{91}{69} / 22^{4}$
$R=$ remainder
If dividing $2 x^{2}-x-1$ by $x-1$ we can use either of the two methods:

Ex 1: Using both methods, divide $4 k^{2}+5 k-6$ by $k+2$.
a) long division
b) synthetic division
REMAINDER THEOREM: when a polynomial $P(x)$ is divided by a binomial of the form $x-a$, the remainder is $P(a) \rightarrow P(a)=R$

$$
\begin{aligned}
& \text { binomial : } k+2 \rightarrow \text { zero }=-2 \\
& 4 k^{2}+5 k-6 \rightarrow P(-2)= 4(-2)^{2}+5(-2)-6 \\
& 16-10-6=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4 k-3}{\frac{4 k^{2}+5 k-6}{4 k^{2}+5 k}} \\
& \frac{-\left(4 k^{2}+8 k\right) \downarrow}{-3 k-6} \\
& -(-3 k-6)
\end{aligned}
$$

$$
\text { no } x^{2}
$$

Ex. 2: Determine the remainder when $P(x)=x^{3}-10 x+6$ is divided by $x+4$ using:
a) long or synthetic division.

$$
=x^{3}+0 x^{2}-10 x+6
$$

$$
\begin{gathered}
-4 \left\lvert\, \begin{array}{cccc}
1 & 0 & -10 & 6 \\
\downarrow & -4 & 16 & -24
\end{array}\right. \\
\begin{array}{ccc|c}
1 & -4 & 6 & -18 \\
x^{2}-4 x+6
\end{array}
\end{gathered}
$$

b) the remainder theorem.

$$
\begin{aligned}
& \text { Zero }=-4 \quad P(-4)=(-4)^{3}-10(-4)+6=-64+40+6=-18 \\
& \text { per remainder theorem. }
\end{aligned}
$$

c) Write the division statement for the above division.

$$
\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a} \rightarrow \frac{x^{3}-10 x+6}{x+4}=x^{2}-4 x+6 \frac{-18}{x+4}
$$

Ex.3: Determine the value of k such that when $f(x)=x^{4}+k x^{3}-3 x-5$ is divided by $\underbrace{x-3}$, the remainder is -14 .

$$
\begin{aligned}
& \rightarrow P(a)=R \\
& P(3)=-14 \\
& (3)^{4}+k(3)^{3}-3(3)-5=-14 \\
& 81+27 k-9-5=-14 \\
& 81+27 k-k=-14
\end{aligned} \quad \begin{aligned}
& 27 k=-81 \\
& k=-3
\end{aligned}
$$

Ex.4: For what value of b will the polynomial $P(x)=4 x^{3}-3 x^{2}+b x+6$ have the same remainder when it is divided by both $\underbrace{x-1}$ and $\underbrace{x+3}$?

$$
\begin{aligned}
& \rightarrow P(a)=R \quad \text { zero }=1 \quad \text { zero }=-3 \\
& \rightarrow P(1)=P(-3) \\
& 4(1)^{3}-3(1)^{2}+b(1)+6=4(-3)^{3}-3(-3)^{2}+b(-3)+6 \\
& 4-3+b+6=-108-27-3 b+6 \\
& 1+b=-135-3 b \\
& 4 b=-136 \rightarrow b=-34
\end{aligned}
$$

Practice: H4 - Remainder Theorem Practice

