L5 - Rational Root \& Factor Theorem

October-28-15
12:23 PM

Quest 4: (Wednesday)
 - 32 marks
 - Non-Calc.
 - 70 minutes

Functions \& Polynomials
Lesson 5: Rational Root \& Factor Theorem

Last day we saw the remainder theorem (that $\mathrm{P}(\mathrm{a})=$ Remainder). Today we will look at a specific case of the remainder theorem that will help us factor polynomials of degree >2.

$$
\checkmark \text { Remanider }=0
$$

FACTOR THEOREM: if $P(a)=0$ then $x-a$ is a factor of the polynomial $P(x)$.

$$
\check{L}=(x-1)(x+1)(x-3)
$$

Ex. 1: Which binomials are factors of the polynomial $P(x)=x^{3}-3 x^{2}-x+3$? Justify your answers.
a) $\underbrace{x-1} P(1)=1^{3}-3(1)^{2}-(1)+3$
b) $\underbrace{x+1} \quad P(-1)=(-1)^{3}-3(-1)^{2}-(-1)+3$
zero $=1=0 \quad l$
zero $=-1$
$=0$
c) $\underbrace{x+3}$
$P(-3)=(-3)^{3}-3(-3)^{2}-(-3)+3$ $2 e r o=-3$
$=-27-27+3+3 \quad x$
d) $\underbrace{x-3}$ $P(3)=(3)^{3}-3(3)^{2}-(3)+3$
$200=3$
$=27-27-3+3$
$=0$

The rational root theorem tells us to check the factors of the constant term (p) divided by the factors of the leading coefficient a to find a possible factor of a polynomial.

For example, if trying to factor the above polynomial $P(x)=x^{3}-3 x^{2}-x+3$ we would check the factors of 3 divided by the factors of 1 , or simply $\frac{ \pm 3, \pm 1}{ \pm 1}$, to find an initial factor of the polynomial.

Ex. 2: a) List all of the possible factors of $P(x)=2 x^{3}-5 x^{2}-4 x+3: \frac{ \pm 1, \pm 3}{ \pm 1, \pm 2}$
b) Find one such factor where $P(a)=0$.

$$
P(1)=2(1)^{3}-5(1)^{2}-4(1)+3 \neq 0 \times P(-1)=2(-1)^{3}-5(-1)^{2}-4(-1)+3=0 \quad V
$$

c) Perform division to determine the quotient when $P(x)$ is divided by x-a.
d) Factor the quotient $\mathrm{Q}(\mathrm{x})$.

$$
\begin{aligned}
& -1 \left\lvert\, \begin{array}{lllll}
2 & -5 & -4 & 3 & P(x)=(x+1)\left(2 x^{2}-7 x+3\right) \\
\downarrow & -2 & 7 & -3
\end{array}\right. \\
& \begin{array}{ccc}
\left(\frac{2 x-6}{2}\right)(2 x-1) \\
2 & -7 & 3
\end{array} \\
& \begin{array}{ll}
2 x^{2} & -7 x+3
\end{array}
\end{aligned}
$$

To factor any polynomial:

1. Find an initial factor by finding a value where $P(a)=0$. Check all factors of the constant term. \div by lead,
2. Divide the polynomial by the initial factor using synthetic or long division.
coff.
3. Divide the polynomial by the initial factor using synthetic or long division.
4. Factor the remaining quotient by the factor theorem (again), or using factoring methods for quadratics.

Note: Always check for a GCF first when factoring!

$$
\angle G C F=x
$$

Ex. 3: Factor $f(x)=x^{4}-4 x^{3}+x^{2}+6 x$ completely.
Check: $\pm 1, \pm 2, \pm 3, \pm 6$

$$
\begin{array}{rll}
& =x\left(x^{3}-4 x^{2}+x+6\right) \\
f(-1) & =(-1)^{3}-4(-1)^{2}-1+6=0 & f(x)=x(x+1)\left(x^{2}-5 x+6\right) \\
& -1 \left\lvert\, \begin{array}{llcc}
1 & -4 & 1 & 6 \\
\downarrow & -1 & 5 & -6
\end{array}\right. & f(x)=x(x+1)(x-2)(x-3)
\end{array}
$$

$$
-1 \left\lvert\, \begin{array}{cccc}
1 & -4 & 1 & 6 \\
\downarrow & -1 & 5 & -6 \\
1 & -5 & 6 & 0
\end{array}\right.
$$

Ex.5: Sketch the graph of the polynomial function without graphing technology.
$y=-2 x^{3}+6 x-4 \quad G C F=-2$
$=-2\left(x^{3}-3 x+2\right) \quad$ Cher: $\pm 1, \pm 2$
$\rightarrow f(1)=0 \rightarrow x-1$ is a factor
$1 \left\lvert\, \begin{array}{cccc}1 & 0 & -3 & 2 \\ 1 & 1 & 1 & -2 \\ 1 & 1 & -2 & 0\end{array}\right.$
$y=-2(x-1)^{2}(x+2)$

$$
\begin{aligned}
& \text { Ex. 4: Factor } x^{4}-5 x^{3}+2 x^{2}+20 x-24 \text { completely. } \\
& \text { Check: } \pm(1,2,3,6,4,8,12,24) \quad \rightarrow \text { Check: } \pm(1,2,3,4,6,12) \\
& f(-2)=(-2)^{4}-5(-2)^{3}+2(-2)^{2}+20(-2)-24=0 \quad f(2)=0 \rightarrow x-2 \text { is a factor } \\
& \rightarrow x+2 \text { is a factor } \\
& \left.-2 \left\lvert\, \begin{array}{ccccc}
1 & -5 & 2 & 20 & -24 \\
\downarrow & -2 & 14 & -32 & 24 \\
1 & -7 & 16 & -12 & 0
\end{array}\right.\right] \\
& \rightarrow \text { Why will it be useful to factor these polynomials? } \\
& \text { - Graph! } \\
& \text { - Solve if } f(x)=0 \\
& \begin{aligned}
& x^{2}-5 x+6 \\
& (x-2)(x-3) \\
f(x)= & (x+2)(x-2)(x-2)(x-3) \\
= & (x+2)(x-2)^{2}(x-3)
\end{aligned} \\
& \begin{aligned}
& x^{2}-5 x+6 \\
& (x-2)(x-3) \\
f(x)= & (x+2)(x-2)(x-2)(x-3) \\
= & (x+2)(x-2)^{2}(x-3)
\end{aligned} \\
& \begin{array}{l}
2 \left\lvert\, \begin{array}{cccc}
1 & -7 & 16 & -12 \\
\downarrow & 2 & -10 & 12 \\
1 & -5 & 6 & 0 \\
x^{2}-5 x+6
\end{array}\right. \\
(x-2)(x-3) \\
f(x)=(x+2)(x-2)(x-2)(x-3) \\
=(x+2)(x-2)^{2}(x-3)
\end{array} \\
& \begin{array}{l}
2 \left\lvert\, \begin{array}{cccc}
1 & -7 & 16 & -12 \\
\downarrow & 2 & -10 & 12 \\
1 & -5 & 6 & 0 \\
x^{2}-5 x+6
\end{array}\right. \\
(x-2)(x-3) \\
f(x)=(x+2)(x-2)(x-2)(x-3) \\
=(x+2)(x-2)^{2}(x-3)
\end{array} \\
& \begin{aligned}
& x^{2}-5 x+6 \\
& (x-2)(x-3) \\
f(x)= & (x+2)(x-2)(x-2)(x-3) \\
= & (x+2)(x-2)^{2}(x-3)
\end{aligned}
\end{aligned}
$$

