L5 - Sigma Notation

February-19-16
12:39 PM

Unit 8: Sequences \& Series

Lesson 5 Sigma Notation

A series is the sum of all given terms, such as: $\quad S_{5}=t_{1}+t_{2}+t_{3}+t_{4}+t_{5}$

Consider u_{n} as the general term of any sequence, the sum of the first 5 terms can be represented as follow:

Σ is used to represent the sum of a number sequence. The number below indicates the start of a sequence, and the number above indicates the end of a sequence.

The advantage of using sigma notation is that it can also express the sum of several terms in the middle of a series.

$\rightarrow \quad$ In general, it is $\sum_{n=\text { start }}^{\text {end }} u_{n}$

$$
\text { total \#of terms = end -start }+1
$$

Eg1. Expand the following sigma notation. Then evaluate.

$$
\begin{aligned}
& \text { a) } \sum_{k=3}^{5} 10 k=10(3)+10(4)+10(5)=120 \\
& (n=3) \\
& \text { b) } \sum_{i=-2}^{3} 3 i^{2}=3(-2)^{2}+3(-1)^{2}+3(0)^{2}+3(1)^{2}+3(2)^{2}+3(3)^{2}=57 \\
& (n=6) \\
& \begin{array}{ll}
\text { c) } \sum_{m=0}^{7} 5 \quad 5+5+5+5+5+5+5+5=8(5)=40 \\
(m=0) m=1
\end{array} \quad m=7 \quad 4 \quad 2 \\
& (n=8) \\
& \text { d) } \sum_{n=1}^{100}(2 n+3)=5+7+9+11+\ldots+203 \quad \text { Arithmetic Series! } \\
& (n=100)^{\sum_{n=1}} \quad S_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right) \quad d=2 \\
& S_{100}=\frac{100}{2}(5+203)=10400 \\
& \text { Inhale: Matt } 0: \text { Summation } \Sigma
\end{aligned}
$$

Note: For arithmetic series, we have $\quad \mathrm{S}_{\mathrm{n}}=\sum_{n=\text { start }}^{\text {end }}\left[u_{1}+(n-1) d\right]$
For geometric series, we have: $\quad \mathrm{S}_{\mathrm{n}}=\sum_{n=\text { start }}^{\text {end }}\left[u_{1} r^{n-1}\right]$

Eg2. Write each series using sigma notation.
a) $2-6+18-54+162-486+1458$
b) $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$

Geometric
$r=-3$$\quad \sum_{n=1}^{7} 2(-3)^{n-1}$
Geometric

$$
r=0.5
$$

$$
\text { c) } 3+8+13+18+\ldots+248
$$

$$
\sum_{n=1}^{\infty} 1(0.5)^{n-1}
$$

* $n=$?

$$
\begin{aligned}
& \text { Arithmetic } \sum_{n=5}^{50}[3+(n \\
& \text { For the following geom } \\
& \text { i) } \sum_{i=3}^{102} 3\left(\frac{1}{2}\right)^{i-90}
\end{aligned}
$$

$$
\begin{gathered}
248=3+(n-1) 5 \\
245=(n-1) 5 \\
n=50
\end{gathered}
$$

Eg3. For the following geometric series:
ii) $\sum_{k=3}^{\infty} \frac{2^{k}}{3^{k-1}}$
a) Determine the number of terms.
i) $n=102-89+1$
ii)

$$
n=14
$$

$$
\begin{aligned}
n & =\infty-3+1 \\
& =\infty
\end{aligned}
$$

b) State the first 3 terms of the series, and evaluate the sum.

$$
\begin{aligned}
& \text { i) } \begin{array}{l}
3\left(\frac{1}{2}\right)^{89-90}+3\left(\frac{1}{2}\right)^{90-90}+3\left(\frac{1}{2}\right)^{91-90} \\
6+3+\frac{3}{2}+\ldots \\
S_{14}=\frac{6\left(\left(\frac{1}{2}\right)^{14}-1\right)}{\frac{1}{2}-1}=\frac{49149}{4096}
\end{array} .=\$ \text {, }
\end{aligned}
$$

$$
\text { ii) } \frac{2^{3}}{3^{3-1}}+\frac{2^{4}}{3^{4-1}}+\frac{2^{5}}{3^{5-1}}+\cdots
$$

Eg4. If $\underbrace{\sum_{n=1}^{10}(3 n+k)}=185$, find the value of k .

$$
\begin{aligned}
& (3(1)+k)+(3(2)+k)+(3(3)+k)+\ldots+(3(10)+k)=185 \\
& (3+k)+(6+k)+(9+k)+\ldots+(30+k)=185 \\
& 10 \mathrm{k}+\underbrace{(3+6+9+\ldots+30)}=185 \longrightarrow 10 \mathrm{k}+165=185 \\
& \text { frith. } \\
& \text { Practice: Worksheet } \\
& 10 k=20 \\
& S_{10}=\frac{10}{2}(3+30) \\
& k=2
\end{aligned}
$$

QLESTIONS:

1) Expand and evaluate the following:
a) $\sum_{n=2}^{5} 2 n-1$
b) $\sum_{n=1}^{3} 3\left(\frac{1}{3}\right)^{n-1}$
c) $\sum_{n=1}^{3} 2^{n^{2}-1}$
2) Determine the sum using formulas. (Rather than simply adding all terms)
a) $\sum_{k=3}^{8} 3\left(\frac{1}{2}\right)^{k+1}$
b) $\sum_{n=7}^{17} 2^{n}$
c) $\sum_{k=4}^{\infty} 8\left(\frac{1}{2}\right)^{k-2}$
d) $\sum_{i=-4}^{16} 3 i+5$
3) Write the following series in sigma notation, then find the sum.
a) $4+1+\frac{1}{4} \cdots \frac{1}{1024}$
b) $15+45+135+\ldots+295245$
C) $1+\frac{1}{2}+\frac{1}{4}+\ldots$
d) $11+17+23+\ldots \ldots+365$
4) Evaluate the following.
a) $\sum_{i=1}^{\infty} 5\left(\frac{2}{3}\right)^{i}$
b) $\sum_{k=1}^{\infty} 2^{-k}$
c) $\sum_{k=0}^{13}(2-0.3 k)$

Answers:
a) 24
b) $13 / 3$
c) 265
2 a) $189 / 512$
b) 262016
c) 4
d) 483
a) $\sum_{n=1}^{7} 4\left(\frac{1}{4}\right)^{n-1}=\sum_{n=1}^{7} 4^{2-n}=\frac{5461}{1024}$
b) $\sum_{n=1}^{10} 15(3)^{n-1}=\sum_{n=1}^{10} 5(3)^{n-1}=442860$
c) $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n-1}=\sum_{n=1}^{\infty} \frac{2}{2^{n}}=\sum_{n=1}^{\infty} 2^{1-n}=2$
d) $\sum_{n=1}^{60}[11+6(n-1)]=\sum_{n=1}^{60}(6 n+5)$

4
a) 10
b) 1
c) 0.7

