L5 - Solving Equations with Logs

7:52 AM

Unit 7: Exponents \& Logarithms
Lesson 5 Solving Equations Involving Logarithms
A) Exponential Function:

$$
y=a \cdot b^{x}
$$

B) Exponents/Logarithms Conversion:

$$
a^{x}=b \quad \Leftrightarrow \quad x=\log _{a} b \quad \text { or } \quad x=\log _{a} b \quad \Leftrightarrow \quad a^{x}=b
$$

C) Basic Facts for Logarithms:

$$
\begin{aligned}
& \log _{a} a=1 \text { and } \\
& \log _{a}(a)^{x}=x \quad \Leftrightarrow \quad x=a^{\log _{a} x} \\
& \ln e=1 \text { and } \\
& a^{x}=e^{x \ln a}
\end{aligned}
$$

D) Power Law:

$$
\log _{a}\left(x^{\cap}=n \cdot \log _{a}(x) \quad \text { or } \quad n \cdot \log _{a}(x)=\log _{a}(x)^{n}\right.
$$

E) Multiplication \& Division Law:

$$
\begin{array}{rll}
\log _{b}(x \cdot y)=\log _{b}(x)+\log _{b}(y) & \text { or } & \log _{b}(x)+\log _{b}(y)=\log _{b}(x \cdot y) \\
\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y) & & \log _{b}(x)-\log _{b}(y)=\log _{b}\left(\frac{x}{y}\right)
\end{array}
$$

F) Change of Base:

$$
\log _{b} a=\frac{\log a}{\log b} \quad \text { or } \quad \log _{b} a=\frac{\log _{c} a}{\log _{c} b} \quad \neq T 1-83
$$

Example 1: Solve each of the following and check your solutions

Quotient

$$
\begin{aligned}
& \text { a) } \log _{2} x \ominus \log _{2}(x+2)=3 \\
& \log _{2} \frac{x}{x+2}=3 \\
& \rightarrow 2^{3}=\frac{x}{x+2} \\
& (x+2) 8=\frac{x}{x+2}(x+2) \\
& 8 x+16=x \\
& 7 x=-16 \\
& x=-\frac{16}{7}
\end{aligned}
$$

check: $x>0$ $x+2>0$

$$
x>-2
$$

No Solution!

$$
\text { only } x=3
$$

b) $\log _{5}(2 x-1) \oplus \log _{5}(x-2)=1$

$$
\begin{array}{ll}
\log _{5}(2 x-1)(x-2)=1 & \\
\rightarrow 5^{\prime}=(2 x-1)(x-2) \\
5=2 x^{2}-4 x-x+2 \\
0=2 x^{2}-5 x-3 & \\
(2 x-6)(2 x+1) & \text { check: } \\
0=(x-3)(2 x+1) & 2 x-1>0 \\
& x>\frac{1}{2} \\
x=3,-\frac{1}{2} & x-2>0 \\
& x>2
\end{array}
$$

product

$$
\begin{array}{lc}
\text { c) } \begin{array}{lc}
\log (x-6) \oplus \log (x-2)=\log 5 & \text { d) } \log _{3}(2 x+4) \ominus \log _{3}(x-1)=\log _{3} 8 \\
\log (x-6)(x-2)=\log 5 & \log _{3}\left(\frac{2 x+4}{x-1}\right)=\log _{3} 8 \\
\rightarrow(x-6)(x-2)=5 & \rightarrow \frac{2 x+4}{x-1}=8(x-1) \\
x^{2}-2 x-6 x+12=5 & 2 x+4=8 x-8 \\
x^{2}-8 x+7=0 & 12=6 x \\
(x-7)(x-1)=0 & \text { check: } \\
x=7,1 & \begin{array}{c}
x-6>0 \\
x>6 \\
x-2>0 \\
\text { only } x=7
\end{array} \\
\begin{array}{cc}
x>2
\end{array} & 2=x
\end{array}
\end{array}
$$

Check:

$$
2 x+4>0
$$

$$
x>-2
$$

$$
x-1>0
$$

$$
x>1
$$

Remember there are restrictions on logarithmic expressions
Ex Ample 2: State the restrictions on x for each of the following equations:
a) $\log _{2}(x+2)=1$
b) $\log _{3}(x+4)-\log _{5}(3-x)=\log 2$

Charge of Base
Example 3. Solve.
a) $\log _{3}(x+1)-\log _{9} x=0$

$$
\begin{gathered}
?=\frac{1}{2} \quad \log _{9}(x+1) \\
q^{?}=3 \quad \log _{9} x=0 \\
\log _{9} 3
\end{gathered} 2 \log _{9}(x+1)-\log _{9} x=0, ~\left(\log _{9}(x+1)^{2}-\log _{9} x=0 .\right.
$$

Practice: Worksheet $x_{\text {Ls }}$ - Solving Logarithmic Equations $10^{3}=x$

$$
\begin{aligned}
& x=1000, \frac{1}{10} \\
& \text { b) }(\log x)^{2}=\log x^{2}+3 \\
& (\log x)^{2}=2 \log x+3 \\
& n^{2}=2 n+3 \quad \operatorname{let} \log x=n \\
& n^{2}-2 n-3=0 \\
& (n-3)(n+1)=0 \\
& n=3,-1 \\
& \log x=3 \text { or } \log _{x^{-1}} x=-1 \\
& \rightarrow 10^{3}=x \quad 10^{-1}=x \\
& \text { cheek. } \\
& x>0
\end{aligned}
$$

b)

