L6 - Solving Exp Equations with Logs

Unit 7: Exponents \& Logarithms
Lesson 6 Solving Exponential Equations Using Logarithms
If we are solving an exponential equation that cannot match the base, we can now use logarithms (finally!)

Ex.1: \quad Solve for x

$$
\begin{gathered}
\text { a) } 7^{7^{x+1}=9} \\
\rightarrow \log _{7} 9=x+1 \\
x=\log _{7} 9-1 \approx 0.129 \\
(7 \neq-83)=\frac{\log _{7} 9}{\log 7}-1
\end{gathered}
$$

$$
\otimes \log 3+2 \log 3=2 \otimes \log 5-3 \log 5
$$

$$
2 \log 3+3 \log 5=2 \otimes \log 5-\otimes \log 3 \quad \text { factor }
$$

$$
\begin{aligned}
2 \log 3+3 \log 5 & =x(2 \log 5-\log 3) \\
x=\frac{2 \log 3+3 \log 5}{2 \log 5-\log 3} & \approx 3.31
\end{aligned}
$$

There are many applications of logarithms as well... just as with exponential functions.
Ex. 2: Strontium- 90 has a half-life of 28 years. How long will it take a 85 g sample to decay to 15 g ?

$$
\begin{array}{ll}
P(t)=P_{0}(0.5)^{t / n} \\
n=28 & \frac{15}{85}=\frac{88}{85}(0.5)^{t / 28} \\
P_{0}=85 & \\
P(t)=15 & \frac{3}{17}=(0.5)^{t / 28} \\
& \rightarrow \log _{0.5} \frac{3}{17}=\frac{t}{28}
\end{array}
$$

≈ 70.1 years

$$
\begin{aligned}
& \text { c) } 3\left(8^{x-2}\right)=5^{1+x} \\
& \begin{array}{l}
\log 3\left(8^{x-2}\right)=\log 5^{1+x} \\
\log 3+\log 8^{(x-2)}=\log 5^{(1+x)} \\
\log 3+(x-2) \log 8=(1+x) \log 5
\end{array} \\
& \log 3+x \log 8-2 \log 8=\log 5+\times \log 5 \\
& \times \log 8-x \log 5=\log 5+2 \log 8-\log 3
\end{aligned}
$$

Ex. 3: How long would it take a population of bees to triple if they multiply 8 fold every 5 weeks?

$$
P(t)=P_{0}(r)^{t / n}
$$

- Ied

Ex. 4: How much more intense is an earthquake of 9.8 than an earthquake of 5.4 on the Richter Scale?
Intensity $=\frac{10^{a}}{10^{b}}$
$a, b=$ Richter scale

$$
I=\frac{10^{9.8}}{10^{5.4}}
$$

$$
I=10^{4.4}
$$

$$
\approx 25118.9
$$

Ex. 5: If an earthquake registers 2.7, how high on the Richter scale does an earthquake 52000 times stronger register at?

$$
\begin{aligned}
& 52000=\frac{10^{a}}{10^{2.7}} \\
& 52000=10^{a-2.7} \\
& \rightarrow \log _{10} 52000=a-2.7 \\
& a=\log 52000+2.7 \\
& a=7.42
\end{aligned}
$$

Practice: Pg. 136-137 \# 1-21 (Omit \# 6, 7, 10)

